UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :B.SC. M.SCi.

Mathematics M14B: Mathematical Methods 2

COURSE CODE	$:$ MATHM14B
UNIT VALUE	$: \mathbf{0 . 5 0}$
DATE	$: \mathbf{0 3 - M A Y - 0 2}$
TIME	$: \mathbf{1 4 . 3 0}$
TIME ALLOWED	\cdot

02-C0942-3-180
© 2002 University of London

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State, without proof, the general formula for a Fourier series on $(-L, L)$, with $L>0$, for a function $f(x)$, giving the expressions for the coefficients.
(b) On $(-\pi, \pi)$, find the Fourier series of $f(x)=\exp (x)$.
(c) Hence or otherwise, find the Fourier series of $g(x)=\sinh (x)$, and $h(x)=$ $\cosh (x)$, each on the range $(-\pi, \pi)$.
2. (a) Find the directional derivative of $V=(x+y)^{2} \exp (z)$ at the point $\mathbf{r}_{0}=(1,2,3)$ in the direction $\mathbf{A}=(1,1,1)$.
(b) Sketch the surface $z=1-\left(x^{2}+y^{2}\right)^{\frac{1}{2}}, 0 \leqslant z$. Find the tangent plane to the surface at the point on the surface with $x=y=\frac{1}{2}$.
(c) Define the operators grad and curl. From your definitions, show that for any smooth scalar fields ϕ and ψ

$$
\operatorname{curl}(\phi \operatorname{grad} \psi)=\operatorname{grad} \phi \times \operatorname{grad} \psi
$$

and verify your result for $\phi=\exp (x+y+z)$ and $\psi=z^{2}$.
(d) Evaluate

$$
\text { curl curl curl curl }\left(x y z+y^{2} z, x^{2}+y z,(x+y)^{3}\right)
$$

Explain your reasoning carefully, if you use any short cuts.
3. (a) Find the arc length of the curve C given by

$$
\mathbf{r}(t)=(\cos (\cosh t), \sin (\cosh t), t), \quad 0 \leqslant t \leqslant a .
$$

Sketch the curve C for $a=\cosh ^{-1}(2 \pi)$.
(b) Find

$$
K=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

- where C is the closed curve $\mathbf{r}(t)=\left(t(1-t), 2 t(1-t), t^{2}(1-t)\right), 0 \leqslant t \leqslant 1$, and $\mathbf{F}=\mathbf{j} \times \mathbf{r}$, where $\mathbf{j}=(0,1,0)$.

4. (a) Define the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}
$$

where $x(u, v)$ and $y(u, v)$ are smooth functions.
(b) Determine the Jacobian, from your definition, for the change of coordinates from Cartesian coordinates to plane polar coordinates.
(c) By a suitable change of coordinates, or otherwise, find

$$
I=\int_{0}^{\infty} \int_{0}^{\infty}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} \exp \left(-\left(x^{2}+y^{2}\right)^{\frac{5}{2}}\right) d x d y
$$

(d) By reversing the order of integration, find

$$
J=\int_{0}^{1} \int_{y}^{1} x \exp \left(x^{3}\right) d x d y
$$

showing in a diagram the region of integration.
5. (a) State carefully the divergence theorem.
(b) Verify the divergence theorem for the vector field

$$
\mathbf{A}=(x+y z) \mathbf{i}+\left(y^{3} z+x\right) \mathbf{j}+(z+x y z) \mathbf{k}
$$

and the region V enclosed by $x^{2}+y^{2}=1$ with $0 \leqslant z \leqslant 1$. Sketch the surface of V.
Hint: Use symmetry arguments where possible.
6. (a) State carefully Stokes' theorem.
(b) Verify Stokes' theorem for the vector field

$$
\mathbf{A}=\left(1+x y^{2}\right) \mathbf{i}+(x+2 x y z+2) \mathbf{j}+\sin (z) \mathbf{k}
$$

and the surface S defined by $x^{2}+y^{2}+z^{2}=25$ and $z \geqslant 3$. Sketch the surface S.
Hint: Use symmetry arguments where possible.

