UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M14A: Mathematical Methods 1

COURSE CODE	:	MATHM14A
UNIT VALUE	:	0.50
DATE	:	11-MAY-06
TIME	:	14.30
TIME ALLOWED	:	2 Hours

ð

All questions may be answered, but only marks obtained on the best **four** questions will count. The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Define the scalar product $\mathbf{a} \cdot \mathbf{b}$ and the vector product $\mathbf{a} \wedge \mathbf{b}$ of the two vectors \mathbf{a} and \mathbf{b} .
 - (b) Show that the volume of the parallelepiped with three concurrent (i.e. sharing a common corner) edges, given by the vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , is $|[\mathbf{a}, \mathbf{b}, \mathbf{c}]|$ where $[\mathbf{a}, \mathbf{b}, \mathbf{c}] = (\mathbf{a} \wedge \mathbf{b}) \cdot \mathbf{c}$.
 - (c) Show that

1

4

$$(\mathbf{a} \wedge \mathbf{b}) \wedge (\mathbf{c} \wedge \mathbf{d}) = [\mathbf{a}, \mathbf{c}, \mathbf{d}]\mathbf{b} - [\mathbf{b}, \mathbf{c}, \mathbf{d}]\mathbf{a} = [\mathbf{d}, \mathbf{a}, \mathbf{b}]\mathbf{c} - [\mathbf{c}, \mathbf{a}, \mathbf{b}]\mathbf{d},$$

and hence find a representation of any vector in terms of three other vectors that are not themselves coplanar.

2. (a) If z = x + iy, express the following constraints on z as constraints on x and y.

i) |z - i| = |z + 1|, ii) $|z - i| \ge |z + i|$.

(b) Show that

$$1 + z + z^{2} + z^{3} + z^{3} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z}$$

for positive integer n. By considering the limit $n \to \infty$, show that if a and θ are real with |a| < 1 then,

$$a\sin\theta + a^2\sin 2\theta + a^3\sin 3\theta + \cdots = \frac{a\sin\theta}{1 - 2a\cos\theta + a^2}.$$

PLEASE TURN OVER

3. (a) Show that the function

$$y(x) = \frac{\exp(ax)}{1 + \exp(x)},$$

has a stationary point at

$$x = \ln\left(rac{a}{1-a}
ight), \quad y = a^a(1-a)^{1-a},$$

for 0 < a < 1. Sketch the graph of the function for the three cases $a = \frac{1}{2}$, a = 1, a = 2 on a single set of axes.

(b) You are given that the function

$$y(x) = \sinh^{-1} x + (\sinh^{-1} x)^2,$$

satisfies the differential equation

$$(1+x^2)y'' + xy' = 2,$$

where a prime denotes differentiation with respect to x. Use Leibnitz' rule for differentiating a product to show that, if n is even,

$$y^{(n)}(0) = -(-1)^{\frac{n}{2}}(n-2)^2(n-4)^2\cdots(2)^2(2),$$

where $y^{(n)}(x)$ is the *n*th derivative of y(x). What is the equivalent expression for odd values of n?

4. Find the integrals

a)
$$\int_0^\infty x \exp(-x) dx$$
, b) $\int_{-\infty}^1 \frac{\exp(x)}{1 + 2\exp(x)} dx$, c) $\int_0^1 x \tan^{-1}(x) dx$,
d) $\int \frac{\tan(\ln x)}{x} dx$, e) $\int_1^\infty \frac{dx}{x^3 + x^2 + x}$.

- 5. Find the solution of the equations
 - (a) $y' = 2 + y^2$, y(0) = 0.
 - (b) $y' + y \sin x = x \exp(\cos x), y(0) = 0,$
 - (c) $4(2x^2 + xy)y' = 3y^2 + 4xy$.

where a prime denotes differentiation with respect to x.

6. Solve the differential equations

(a)
$$x^2y'' - 2xy' + 2y = 1$$
, $y(1) = 1$, $y'(1) = 0$,
(b) $y'' + y' - 6y = x + \exp(2x)$, $y(0) = 0$, $y'(0) = 1/5$.

where a prime denotes differentiation with respect to x.

MATHM14A

~

END OF PAPER

t.