University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M14A: Mathematical Methods 1

COURSE CODE : MATHM14A

UNIT VALUE : 0.50

DATE : 07-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be answered, but only marks obtained on the best four questions will count. The use of an electronic calculator is not permitted in this examination.

1. (a) Define the scalar product $\mathbf{a} \cdot \mathbf{b}$ of the vectors \mathbf{a} and \mathbf{b}. Give a careful definition of their vector product $\mathbf{a} \wedge \mathbf{b}$.
(b) Show that the distance between the two skew lines $\mathbf{r}_{1}=\mathbf{a}_{1}+\lambda \mathbf{b}_{1}$ and $\mathbf{r}_{2}=\mathbf{a}_{2}+\mu \mathbf{b}_{2}$ is

$$
\left|\frac{\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right) \cdot\left(\mathbf{b}_{1} \wedge \mathbf{b}_{2}\right)}{\left|\left(\mathbf{b}_{1} \wedge \mathbf{b}_{2}\right)\right|}\right| .
$$

(c) Show that if the two lines

$$
\begin{aligned}
& \frac{x-c_{1}}{d_{1}}=\frac{y-c_{2}}{d_{2}}=\frac{z-c_{3}}{d_{3}}, \\
& \frac{x-d_{1}}{c_{1}}=\frac{y-d_{2}}{c_{2}}=\frac{z-d_{3}}{c_{3}},
\end{aligned}
$$

intersect, they lie in the plane

$$
\mathbf{r} \cdot(\mathbf{c} \wedge \mathbf{d})=0
$$

where $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}, \mathbf{d}=d_{1} \mathbf{i}+d_{2} \mathbf{j}+d_{3} \mathbf{k}$ and \mathbf{c} and \mathbf{d} are not parallel vectors.
2. (a) State De Moivre's theorem and use it to show that if $z=\exp (i \theta)$ then

$$
\left(z^{n}+z^{-n}\right)=2 \cos (n \theta) \quad \text { and } \quad\left(z^{n}-z^{-n}\right)=2 i \sin (n \theta)
$$

where $n \geq 0$ is an integer.
(b) Hence show that

$$
\sin ^{5} \theta=\frac{1}{16}(\sin (5 \theta)-5 \sin (3 \theta)+10 \sin (\theta)) .
$$

(c) Hence, or otherwise, evaluate

$$
\int_{0}^{\pi} \theta \sin ^{4}(\theta) \cos (\theta) \mathrm{d} \theta
$$

3. The function defined by

$$
\operatorname{gd}(t)=\tan ^{-1}(\sinh t)
$$

is known as the gudermannian of t.
(a) Show that gd is odd and sketch its graph.
(b) Given that

$$
\begin{gathered}
\tan ^{-1}(u)=u-\frac{1}{3} u^{3}+\frac{1}{5} u^{5}+\cdots \\
\sinh t=t+\frac{1}{6} t^{3}+\frac{1}{120} t^{5}+\cdots
\end{gathered}
$$

find the power series for $\operatorname{gd}(x)$ up to and including terms in x^{5}.
(c) Show, directly from the definition, that

$$
\operatorname{gd}(t)=\int_{0}^{t} \operatorname{sech} u \mathrm{~d} u
$$

4. (a) Evaluate

$$
\int_{0}^{\infty} \frac{x \mathrm{~d} x}{(x+1)^{2}\left(x^{2}+1\right)}, \quad \int_{0}^{\infty} \frac{\tan ^{-1}(x)}{1+x^{2}} \mathrm{~d} x
$$

(b) If

$$
I_{n}=\int_{\pi / 2}^{x} \frac{\cos ^{2 n+1} t}{\sin t} \mathrm{~d} t, \quad n \geq 0
$$

show that

$$
2(n+1) I_{n+1}=2(n+1) I_{n}+\cos ^{2 n+2} x, \quad n>0
$$

Hence find I_{3}.
5. (a) Find the solution of

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(x-2) y=x^{4}, \quad y(1)=1
$$

(b) Use the substitution $z=\tan y$ to find the general solution of the differential equation

$$
\sec ^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x \tan y=x
$$

6. Solve the differential equations
(a) $y^{\prime \prime}+y^{\prime}-12 y=\cosh 3 x$,
(b) $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=\ln x, \quad y(1)=y^{\prime}(1)=1$.
where a dash denotes differentiation with respect to x.
