University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C348: Mathematics For General Relativity

COURSE CODE : MATHC348

UNIT VALUE : 0.50

DATE : 19-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

Geodesic Equation ($\left.U^{a}=\mathrm{dX}^{a} / \mathrm{d} \tau\right)$

$$
\begin{align*}
& \frac{\mathrm{d} U^{a}}{\mathrm{~d} \tau}+\Gamma^{a}{ }_{b c} U^{b} U^{c}=0 \tag{1}\\
& \frac{\mathrm{~d} p_{a}}{\mathrm{~d} \tau}=\frac{m}{2}\left(\partial_{a} g_{b c}\right) U^{b} U^{c} \tag{2}\\
& \Gamma^{a} \tag{3}\\
&=\frac{1}{2} g^{a d}\left(\partial_{b} g_{c d}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right)
\end{align*}
$$

Geodesics parameterized by λ

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{X}^{a}}{\mathrm{~d} \lambda^{2}}+\Gamma^{a}{ }_{b c} \frac{\mathrm{~d} \mathrm{X}^{b}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} \mathrm{X}^{c}}{\mathrm{~d} \lambda}=0 . \tag{4}
\end{equation*}
$$

Schwarzschild metric line element

$$
\mathrm{d} \tau^{2}=\left(1-\frac{r_{s}}{r}\right) \mathrm{d} t^{2}-\left(1-\frac{r_{s}}{r}\right)^{-1} \mathrm{~d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) ; \quad r_{s}=2 G M
$$

Faraday tensor

$$
F_{a b}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) ; \quad F^{a b}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & B_{z} & -B_{y} \\
-E_{y} & -B_{z} & 0 & B_{x} \\
-E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) .
$$

Dual Faraday tensor

$$
{ }^{*} F^{a b} \equiv \frac{1}{2} \epsilon^{a b c d} F_{c d}=\left(\begin{array}{cccc}
0 & +B_{x} & +B_{y} & +B_{z} \\
-B_{x} & 0 & -E_{z} & E_{y} \\
-B_{y} & E_{z} & 0 & -E_{x} \\
-B_{z} & -E_{y} & E_{x} & 0
\end{array}\right) .
$$

Maxwell Source Equations

$$
\partial_{b} F^{a b}=j_{e}^{a} .
$$

Internal Maxwell Equations

$$
\partial_{a} F_{b c}+\partial_{b} F_{c a}+\partial_{c} F_{a b}=0 \quad \text { or } \quad \partial_{b}^{*} F^{a b}=0 .
$$

1. (a) How does a second rank mixed tensor $Q^{a}{ }_{b}$ transform under a coordinate transformation between unprimed coordinates x^{a} and primed coordinates $x^{\prime a}$?
(b) The trace of a second rank mixed tensor T is defined by

$$
\operatorname{trace}(T)=T_{a}^{a}
$$

Show using the transformation laws, that $\operatorname{trace}(T)$ is a scalar, i.e. that it takes the same value in all coordinate frames.
(c) Given a metric tensor $g_{a b}$, what is the definition of the tensor $g^{c d}$? What is the tensor $g_{a b} g^{b c}$?
(d) Suppose the metric tensor $g_{a b}$ has both a symmetric part $g_{S a b}=g_{S b a}$ and an antisymmetric part, $g_{A a b}=-g_{A b a}$,

$$
g_{a b}=g_{S a b}+g_{A a b}
$$

Show explicitly that the line element $d \tau^{2}$ is independent of $g_{A a b}$.
(e) Consider a two-dimensional manifold M with coordinates x^{1} and x^{2}. Suppose the metric is

$$
g_{a b}=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right)
$$

Also let A^{a} be a vector and $S^{a}{ }_{b c}$ a tensor with values

$$
\begin{array}{rlrlrl}
A^{1} & =-1, \quad A^{2}=2 \\
S^{1}{ }_{11} & =1, \quad S_{12}^{1}=0, & & S^{1}{ }_{21}=2, & S^{1}{ }_{22}=3 \\
S^{2}{ }_{11} & =0, \quad S^{2}{ }_{12}=1, & S^{2}{ }_{21}=2, \quad S^{2}{ }_{22}=2 .
\end{array}
$$

Find the following tensors:
(i) A_{b};
(ii) $X_{c}=S_{a c}^{a}$;
(iii) $B^{a}{ }_{c}=X^{a} X_{b}$.
(f) Using index notation prove the vector identity

$$
\nabla \cdot(A \times B)=B \cdot \nabla \times A-A \cdot \nabla \times B
$$

(g) Determine which of the following equations is a valid tensor equation. Describe the errors in the other equations.
(i) $A_{a b}=B^{a b} F_{c}^{c}$;
(ii) $W^{a}{ }_{b c}=D_{c} E_{b} F^{a}$;
(iii) $f=J_{b} K_{a} L^{a}$.
2. (a) What is the definition of the Lorentz group? Show that all Lorentz transformations have determinant ± 1. Give an example of a Lorentz transformation with determinant -1 .
(b) Suppose inertial reference frame B moves at a velocity V in the x direction with respect to inertial frame A.
Derive the Lorentz transformation between A and B, using the principles of special relativity. You may assume that the transformation is linear, so that

$$
\binom{t}{x}_{\mathrm{B}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{t}{x}_{\mathrm{A}}
$$

for some numbers a, b, c, d. You may also assume that $y_{\mathrm{A}}=y_{\mathrm{B}}, z_{\mathrm{A}}=z_{\mathrm{B}}$.
(c) The Faraday Tensor $F_{a b}$ can be written in terms of the 4 -vector potential ϕ_{a} as $F_{a b}=\partial_{b} \phi_{a}-\partial_{a} \phi_{b}$. The Maxwell Source Equations are $\partial_{b} F^{a b}=j^{a}$ where j^{a} is the current density.
(i) Show that $\partial_{a} j^{a}=0$. Describe the physical meaning of this equation.
(ii) Write the Maxwell Source Equations in terms of ϕ^{a} instead of $F^{a b}$. What do the equations reduce to if we assume Lorentz gauge, $\partial_{a} \phi^{a}=0$?
3. The covariant derivative of a covariant second rank tensor $M_{c d}$ is

$$
\left(\nabla_{b} M\right)_{c d}=\partial_{b} M_{c d}-\Gamma_{b c}^{a} M_{a d}-\Gamma_{b d}^{a} M_{c a} .
$$

Christoffel symbols are assumed to be symmetric in their last two indices:

$$
\Gamma^{a}{ }_{c b}=\Gamma^{a}{ }_{b c} .
$$

(a) Given that the covariant derivative of the metric is always zero, i.e. $\left(\nabla_{b} g\right)_{c d}=0$ for any choice of b, c, and d, derive the equation

$$
\Gamma_{b c}^{a}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{c d}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right)
$$

(b) Consider Euclidean 3 -space \mathbb{E}^{3} with cylindrical coordinates (ρ, ϕ, z). A conical surface within this space can be defined by the equation

$$
z=a \rho
$$

with a constant. Let the coordinates on the cone be $\left(\mathrm{C}^{1}, \mathrm{C}^{2}\right)=(\rho, \phi)$. Show that the metric for the cone in these coordinates is

$$
g_{a b}=\left(\begin{array}{cc}
1+a^{2} & 0 \\
0 & \rho^{2}
\end{array}\right)
$$

(c) Calculate the eight Christoffel symbols $\Gamma^{a}{ }_{b c}$ for this metric.
(d) Consider a geodesic on this cone, parameterized by arclength s. Find expressions for $\mathrm{d}^{2} \phi / \mathrm{d} s^{2}$ and $\mathrm{d}^{2} \rho / \mathrm{d} s^{2}$ along the geodesic.
4. The Newtonian orbit equation for a planet at radius r as a function of angle ϕ is

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{G M}{h^{2}}
$$

where $u=1 / r$ and $h=$ angular momentum/mass. Geodesics in the Schwarzschild metric satisfy the equation

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \phi^{2}}+u=\frac{G M}{h^{2}}+(3 G M) u^{2}
$$

(a) Consider a planet of mass m moving in a geodesic around the sun (mass M) whose gravitational field is described by the Schwarzschild metric. The planet moves in the ecliptic plane $\theta=\pi / 2$. What is the Schwarzschild metric in this plane? Obtain expressions for $\mathrm{d} t / \mathrm{d} \tau$ and $\mathrm{d} \phi / \mathrm{d} \tau$ in terms of two conserved quantities energy/mass k and angular momentum/mass h.
(b) Show that

$$
u(\phi)=u_{0}(1+\epsilon \sin \phi)
$$

is a solution of the Newtonian orbit equation. Find u_{0} in terms of r_{s} and h. At what angle ϕ is perihelion for this solution? What kind of orbit has $\epsilon=0$?
(c) Let

$$
u(\phi)=u_{0}(1+\epsilon \sin \phi+y(\phi))
$$

where $y(\phi) \ll 1$. Consider an orbit with $\epsilon \ll 1$. Find an approximate differential equation for $y(\phi)$ good to first order in ϵ and y.
(d) What are the complementary functions for the differential equation derived in (c)? What are the particular integrals? Find the solution given conditions at perihelion $y(\pi / 2)=0, y^{\prime}(\pi / 2)=0$.
(e) The solution for $y(\phi)$ includes the precession term

$$
\left(3 G M \epsilon u_{0}\right)\left(\frac{\pi}{2}-\phi\right) \cos \phi
$$

plus periodic terms. (Hint: these periodic terms can be neglected). Let the next perihelion be at $\phi=5 \pi / 2+\delta \phi$ where $\delta \phi \ll 1$. Give an approximate expression for the precession angle $\delta \phi$.
5. A spaceship accelerates away from Earth in the x direction. The astronauts feel a constant acceleration equal to g, the acceleration at the Earth's surface. For this question, ignore the y and z coordinates. Proper time on the ship is given by τ. The speed of the ship in the Earth's frame is $V(\tau)$. Let the transformation from ship coordinates S to Earth coordinates E be

$$
\frac{\partial \mathrm{E}^{a}}{\partial \mathrm{~S}^{b}}=\left(\begin{array}{ll}
\partial t_{\mathrm{E}} / \partial t_{\mathrm{S}} & \partial t_{\mathrm{E}} / \partial x_{\mathrm{S}} \\
\partial x_{\mathrm{E}} / \partial t_{\mathrm{S}} & \partial x_{\mathrm{E}} / \partial x_{\mathrm{S}}
\end{array}\right)=\left(\begin{array}{cc}
\gamma(\tau) & \gamma(\tau) V(\tau) \\
\gamma(\tau) V(\tau) & \gamma(\tau)
\end{array}\right)
$$

where $\gamma(\tau)=\left(1-V^{2}(\tau)\right)^{-1 / 2}$. The velocity 4-vector in the ship's frame is

$$
u_{\mathrm{S}}^{a}(\tau)=\binom{1}{0}
$$

The covariant form of Newton's second law of motion for an object of mass m subject to a force F^{a} is

$$
m \frac{\mathrm{D} u^{a}}{\mathrm{D} \tau}=m\left(\frac{\mathrm{~d} u^{a}}{\mathrm{~d} \tau}+\Gamma^{a}{ }_{b c} u^{b} u^{c}\right)=F^{a}
$$

(a) The acceleration at the Earth's surface is approximately $g=10 \mathrm{~m} \mathrm{~s}^{-2}$. Derive an approximate expression for this quantity in relativistic units, i.e. in units of year ${ }^{-1}$.
(b) Let $\phi(\tau)$ be defined by $V(\tau)=\tanh \phi(\tau)$. Write the transformation matrix in terms of $\phi(\tau)$. What is $u_{E}^{a}(\tau)$? What is $d u_{E}^{a}(\tau) / d \tau$?
(c) In the ship's frame, $F_{S}^{a}=\binom{0}{m \mathrm{~g}}$. What is $D u_{S}^{a} / D \tau$ in the ship's frame? What is $\Gamma^{1}{ }_{00}$?
(d) What is $D u_{E}^{a} / D \tau$ in the Earth frame? If we suppose that the Earth frame is a Locally Inertial Frame, what is $\Gamma_{E b c}^{a}$? Hence find a second expression for $d u_{E}^{a} / d \tau$ in the Earth's frame.
(e) Using the results above, find the function $\phi(\tau)$. Hence find the function $t_{E}(\tau)$.

