UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C348: Mathematics For General Relativity

COURSE CODE : MATHC348

UNIT VALUE $\quad 0.50$

DATE : 23-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

Geodesic Equation ($\left.U^{a}=\mathrm{dX} \mathrm{X}^{a} / \mathrm{d} \tau\right)$:

$$
\begin{align*}
\frac{\mathrm{d} U^{a}}{\mathrm{~d} \tau}+\Gamma^{a}{ }_{b c} U^{b} U^{c} & =0 \tag{1}\\
\frac{\mathrm{~d} p_{a}}{\mathrm{~d} \tau} & =\frac{m}{2}\left(\partial_{a} g_{b c}\right) U^{b} U^{c} \tag{2}\\
\Gamma_{b c}^{a} & =\frac{1}{2} g^{a d}\left(\partial_{b} g_{c d}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right) . \tag{3}
\end{align*}
$$

Geodesics parameterized by λ :

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{X}^{a}}{\mathrm{~d} \lambda^{2}}+\Gamma^{a}{ }_{b c} \frac{\mathrm{~d} \mathrm{X}^{b}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} \mathrm{X}^{c}}{\mathrm{~d} \lambda}=0 \tag{4}
\end{equation*}
$$

Schwarzschild metric line element:

$$
\mathrm{d} \tau^{2}=\left(1-\frac{r_{s}}{r}\right) \mathrm{d} t^{2}-\left(1-\frac{r_{s}}{r}\right)^{-1} \mathrm{~d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) ; \quad r_{s}=2 G M
$$

Faraday tensor:

$$
F_{a b}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) \quad F^{a b}=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & B_{z} & -B_{y} \\
-E_{y} & -B_{z} & 0 & B_{x} \\
-E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) .
$$

Dual Faraday tensor:

$$
\mathfrak{F}^{a b} \equiv \frac{1}{2} \epsilon^{a b c d} F_{c d}=\left(\begin{array}{cccc}
0 & +B_{x} & +B_{y} & +B_{z} \\
-B_{x} & 0 & -E_{z} & E_{y} \\
-B_{y} & E_{z} & 0 & -E_{x} \\
-B_{z} & -E_{y} & E_{x} & 0
\end{array}\right) .
$$

Maxwell Source Equations:

$$
\partial_{b} F^{a b}=j_{e}^{a} .
$$

Internal Maxwell Equations:

$$
\partial_{a} F_{b c}+\partial_{b} F_{c a}+\partial_{c} F_{a b}=0 \quad \text { or } \quad \partial_{b} \mathfrak{F}^{a b}=0 .
$$

1. (a) Given a vector $\overline{\mathbf{V}}$ and a gradient ∇f, show that the directional derivative $\overline{\mathbf{V}} \cdot \nabla f$ is a scalar.
(b) Suppose a curve $\gamma(\lambda)$ on a manifold \mathcal{M} has tangent vector $\overline{\mathrm{V}}(\lambda)$. Let the metric on \mathcal{M} be $g_{a b}$ with line element $\mathrm{d} s^{2}=g_{a b} \mathrm{dX}^{a} \mathrm{~d} \mathrm{X}^{b}$.
Let f be a scalar field on \mathcal{M}.

- Define the norm of $\overline{\mathbf{V}}$, i.e. $|\overline{\mathbf{V}}|$.
- Show that if the curve is parameterized by length, i.e. $\lambda=s$, then $|\overline{\mathrm{V}}|^{2}=1$.
- What is $|\overline{\mathrm{V}}|^{2}$ if $\lambda \neq s$?
(c) Using index notation prove the vector identity

$$
\nabla \cdot(\nabla f \times \nabla g)=0
$$

(d) Consider a two-dimensional manifold M with coordinates x^{1} and x^{2}. Suppose the tensors $X^{a}{ }_{b}, Y^{a b}$, and $Q_{a b}$ have the values

$$
\begin{array}{cc}
X^{1}{ }_{1}=2 & X^{1}{ }_{2}=2 \\
X_{1}^{2}=3 & X_{2}^{2}=4 \\
Y^{11}=0 & Y^{12}=3 \\
Y^{21}=1 & Y^{22}=2 \\
Q_{11}=-1 & Q_{12}=2 \\
Q_{21}=7 & Q_{22}=5
\end{array}
$$

Also the metric has the values

$$
g_{11}=1, \quad g_{12}=2, \quad g_{22}=-1
$$

Find the following tensors.
(i) $W^{a c}=Y^{b c} X^{a}{ }_{b}$
(ii) $f=Q_{a b} Y^{a b}$
(iii) $X_{a b}$
(e) Determine which of the following equations is a valid tensor equation. Describe the errors in the other equations.
(i) $A_{a b}=B_{b a}+g_{a b} D_{c} D^{c}$
(ii) $F^{c}{ }_{b}=G^{c a} H_{d a}$
(iii) $f=J_{a} K_{a} L^{a} M^{a}+N_{b}^{b}$
(iv) $P_{c}=\epsilon^{a b c d} Q_{a} R_{b} S_{d}$
2. Suppose that magnetic monopoles exist in nature. Then, in addition to the electric charge-current 4 -vector $\overline{\overline{\mathbf{j}}}_{e}$, there is a magnetic charge-current 4 -vector $\overline{\mathbf{j}}_{m}=$ $\left(\rho_{m}, j_{m x}, j_{m y}, j_{m z}\right)$ where ρ_{m} is the magnetic charge density and $j_{m x}$ is the current of magnetic charge in the x direction. The Maxwell equations become

$$
\begin{aligned}
\partial_{b} F^{a b} & =j_{e}^{a} \\
\partial_{b} \mathfrak{F}^{a b} & =j_{m}^{a}
\end{aligned}
$$

(a) Consider the second equation $\partial_{b} \mathfrak{F}^{a b}=j_{m}^{a}$. Find the four equations for \vec{E} and \vec{B} generated by letting $a=0, a=1, a=2$, and $a=3$.
(b) Show that magnetic charge is conserved; i.e. show that

$$
\partial_{a} j_{m}^{a}=0
$$

(c) The Lorentz force on a magnetic monopole of charge q_{m} and 4 -velocity U^{a} is

$$
f^{a}=\frac{\mathrm{d} p^{a}}{\mathrm{~d} \tau}=q_{m} U_{b} \mathfrak{F}^{a b} .
$$

Find the four equations generated by letting $a=0, a=1, a=2$, and $a=3$. Express these in terms of the three-velocity $\vec{V}=\mathrm{d} \vec{x} / d t$ and $\gamma=\left(1-V^{2}\right)^{-1 / 2}$.
(d) Show that the Lorentz force in the previous item is perpendicular to $\overline{\mathbf{U}}$ in the sense that

$$
\underline{\mathbf{f}} \cdot \overline{\mathrm{U}}=0 .
$$

(e) Suppose that the Faraday tensor $F_{a b}$ can be written in the form

$$
F_{a b}=\partial_{a} \phi_{b}-\partial_{b} \phi_{a}
$$

for some four-potential ϕ. Show that the magnetic current 4 -vector must vanish, i.e. $\overline{\mathbf{j}}_{m}=0$.
3. The metric for Euclidean 3-space E^{3} in spherical coordinates $\left(\mathrm{X}^{1}, \mathrm{X}^{2}, \mathrm{X}^{3}\right)=(r, \theta, \phi)$ is

$$
g_{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

The Christoffel symbols $\Gamma^{1}{ }_{b c}$ and $\Gamma^{2}{ }_{b c}$ for this metric, which you do not need to calculate, are

$$
\Gamma^{1}{ }_{b c}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -r & 0 \\
0 & 0 & -r \sin ^{2} \theta
\end{array}\right)
$$

and

$$
\Gamma_{b c}^{2}=\left(\begin{array}{ccc}
0 & 1 / r & 0 \\
1 / r & 0 & 0 \\
0 & 0 & -\cos \theta \sin \theta
\end{array}\right)
$$

(a) Calculate the remaining Christoffel symbols $\Gamma^{3}{ }_{b c}$, showing your work.
(b) Next consider the spherical surface $r=1$ with coordinates $\left(x^{2}, x^{3}\right)=(\theta, \phi)$. Using previous results, or otherwise, find the four Christoffel symbols $\tilde{\Gamma}_{b c}{ }^{2}$ and the four symbols $\tilde{\Gamma}_{b c}^{3}(b, c=2,3)$ for the spherical surface.
(c) Geodesics on the sphere are great circles. Find $\mathrm{d}^{2} \theta / \mathrm{d} \lambda^{2}$ and $\mathrm{d}^{2} \phi / \mathrm{d} \lambda^{2}$ for a great circle parameterized by λ.
(d) Show that these geodesics have a conserved quantity.
4. (a) Consider a particle of mass m moving in a geodesic around an object of mass M whose gravitational field is described by the Schwarzschild metric. The particle moves in the plane $\theta=\pi / 2$. What is the Schwarzschild metric in this plane? Show that this metric has two symmetries. What are they? Show that there are two conserved quantities k, corresponding to energy/mass, and h, corresponding to angular momentum/mass.
(b) Change variables to $u=1 / r$ and find an expression for $(\mathrm{d} u / \mathrm{d} \phi)^{2}$.
(c) Suppose $E=k m$ and $L=h m$ are the energy and angular momentum of the particle. By taking the limit $m \rightarrow 0$ with E and L held fixed, derive the orbit equation for a photon,

$$
\left(\frac{\mathrm{d} u}{\mathrm{~d} \phi}\right)^{2}=\frac{E^{2}}{L^{2}}-u^{2}+r_{s} u^{3}
$$

Solve this equation in the case $r_{s}=0$, assuming that $r=1 / u$ reaches its minimum value at $\phi=\pi / 2$. Let $b=r_{\text {min }}$, the minimum value of r reached by the photon. Express b in terms of E and L.
(d) For $r \gg r_{s}$ the approximate solution is (you do not need to show this):

$$
u=\frac{\sin \phi}{b}+\frac{r_{s}}{4 b^{2}}(3-2 \sin \phi+\cos 2 \phi) .
$$

Suppose light from a distant star passes close to the surface of the sun on its way to a telescope on Earth. Sketch the path of the light, including both the actual and apparent position of the star. What is the net angle Δ through which the light has been deflected?
5. The covariant derivative ∇ obeys the following formulae (you do not need to show these)

$$
\begin{aligned}
\nabla_{b} f & =\partial_{b} f \\
\left(\nabla_{b} \overline{\mathbf{V}}\right)^{a} & =\partial_{b} V^{a}+\Gamma^{a}{ }_{b c} V^{c} \\
\left(\nabla_{b} \mathbf{W}\right)_{c} & =\partial_{b} W_{c}-\Gamma^{a}{ }_{b c} W_{a} \\
\left(\nabla_{b} M\right)_{c d} & =\partial_{b} M_{c d}-\Gamma^{a}{ }_{b c} M_{a d}-\Gamma^{a}{ }_{b d} M_{c a}
\end{aligned}
$$

(a) Show that the covariant derivative of the metric vanishes, i. e. show that $\left(\nabla_{b} g\right)_{c d}=0$ for any choice of b, c, and d.
(b) Suppose $Q^{a}{ }_{c}$ is a mixed second rank tensor. Find its covariant derivative

$$
\left(\nabla_{b} Q\right)_{c}^{a}
$$

showing your derivation.
(c) Let $\delta^{a}{ }_{c}$ be the Kronecker-delta (identity) tensor. Show that

$$
\left(\nabla_{b} \delta\right)^{a}{ }_{c}=0
$$

(d) Using the results above, or otherwise, show that the derivative of the inverse metric tensor $g^{a b}$ also vanishes.

