UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C381: Logic

ġ,

3

COURSE CODE	: MATHC381
UNIT VALUE	: 0.50
DATE	: 25-MAY-06
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Give the definition of a propositional language L and the set of L-formulas.
 - (b) Define what it means for two formulas A and B to be logically equivalent.
 - (c) Show that $(A \Rightarrow (B \lor C)) \equiv ((A \Rightarrow B) \lor (A \Rightarrow C))$.
 - (d) Show that $((A \& B) \Rightarrow C) \not\equiv ((A \Rightarrow C) \& (B \Rightarrow C)).$
- 2. (a) Define a Hintikka set. State and prove Hintikka's Lemma for the Propositional Calculus.
 - (b) Assuming that every infinite, finitely branching tree has an infinite path, prove that if S is a countable set of propositional formulas and each finite subset of S is satisfiable, then S is satisfiable.
- 3. (a) State and prove the Soundness Theorem for the Predicate Calculus. You may assume that if τ and τ' are tableaux such that τ' is an immediate extension of τ and τ is satisfiable, then τ' is satisfiable.
 - (b) Fix a countable infinite set $V = \{a_1, a_2, \ldots, a_n, \ldots\}$ of parameters. Give the definition of a signed tableau. Use the signed tableau method and the Soundness Theorem to show that the sentence $(\exists x \forall y Rxy) \Rightarrow (\forall y \exists x Rxy)$ is logically valid.
- 4. (a) Give the definition of primitive recursive function, partial recursive function and recursive function.
 - (b) Give the definitions of Turing machine, Turing program and Turing computable partial function.
 - (c) Let $K = \{x \in \omega : \phi_x(x) \text{ converges}\}$. Note that ϕ_x denotes the x^{th} partial recursive function. Show that K is recursively enumerable, but not recursive.
 - (d) Let $Tot = \{x \in \omega : \phi_x \text{ is a total function}\}$. Show that K is 1-reducible to Tot.

MATHC381

1

PLEASE TURN OVER

- 5. (a) In the language of arithmetic with a countably infinite set of variables x, y, z, ... consider the k-place partial function $\lambda x_1 \cdots x_k [\psi(x_1, \ldots, x_k)]$. Define what it means for this function to be arithmetically definable.
 - (b) For each formula F in the language of arithmetic let $\sharp(F)$, be the Gödel number of F. Let $TrueSnt = \{ \sharp S : S \text{ is a true sentence in the language of arithmetic} \}$. Show that every arithmetically definable set $A \subset \omega$ is reducible to TrueSnt.
 - (c) Supposing that every partial recursive function is arithmetically definable, show that the set $K = \{x \in \omega : \phi_x(x) \text{ converges}\}$ is arithmetically definable.

MATHC381

END OF PAPER

Ī

۳