

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

.

B.Sc. M.Sci.

Mathematics C381: Logic

COURSE CODE	: MATHC381
UNIT VALUE	: 0.50
DATE	: 06-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

04-C0932-3-40 © 2004 University College London

TURN OVER

•

. .

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Describe what is meant by operational type, algebraic theory and the derivation of an equation in an algebraic theory.
 - (b) In an algebraic theory with operational type $\{s_1, c_1, a_2, m_2\}$ find a generating sequence for the term *amsxcymcxsy* and show that *axyamxaxy* is not a term.
 - (c) State the axioms of the Propositional Calculus and deduce $(p \Rightarrow r)$ from $\{(p \Rightarrow q), (q \Rightarrow r)\}.$
- 2. (a) In the Predicate Calculus a language L is a set of predicates with each predicate P of L being n-ary for some $n \in \omega$. Define the variables, quantifiers, L-U-formulas for a set U, the degrees of formulas and L-U-sentences.
 - (b) Let U be a nonempty set and S a set of unsigned *L*-*U*-sentences. Define what it means for S to be open and to be *U*-replete.
 - (c) State Hintikka's Lemma and use it, along with the Tableau Method, to conclude that the sentence

$$(\forall x \forall y \forall z ((Rxy \& Ryz) \Rightarrow Rxz)) \& (\forall x \forall y (Rxy \Rightarrow \neg Ryx) \& (\forall x \exists y Rxy)$$

is satisfiable in an infinite domain.

- 3. (a) Give the definition of primitive recursive function, partial recursive function and recursive function.
 - (b) Give the definitions of Turing machine, Turing program and Turing computable partial function.
 - (c) Assuming the Normal Form Theorem show that
 - (i) there is a partial recursive function of two variables $\phi_z^{(2)}(e,n)$ such that $\phi_z^{(2)}(e,n) = \phi_e(n)$;
 - (ii) there exists a 1:1 recursive function s of two variables such that for all variables x and y

$$\phi_{s(x,y)} = \lambda z[\phi_x^{(2)}(y,z)].$$

MATHC381

¥

PLEASE TURN OVER

- 4. Let $K = \{x \in \omega : \phi_x(x) \text{ converges}\}$. A set $A \subset \omega$ is called an index set if for all x and y we have that $x \in A$ and $\phi_x = \phi_y$ implies that $y \in A$. Prove that if $A \neq \emptyset, \omega$, then either $K \leq_1 A$ or $K \leq_1 \overline{A}$.
- 5. Let *L* be a language, *E* a denumerable set of expressions of *L*, *S* ⊂ *E* the set of sentences of *L*, *P* ⊂ *S* the set of provable sentences of *L*, *R* ⊂ *S* the set of refutable sentences of *L*, *H* a set of expressions called the predicates of *L*, *Φ* a function that assigns to every expression *E* and every natural number *n* an expression *E*(*n*) so that for every predicate *H* and every *n*, the expression *H*(*n*) is a sentence, and a set *T* of sentences called the true sentences of *L*. Let {*E_n* : *E* ∈ *E*, *n* ∈ *ω*} be a Gödel numbering of *E*, let *d*(*n*) be the Gödel number of *E_n*(*n*), and let *A*^{*} = {*n* ∈ *ω* : *d*(*n*) ∈ *A*}.
 - (a) Define what it means for a number set to be expressible in \mathcal{L} .
 - (b) Define what it means for the system \mathcal{L} to be correct.
 - (c) Prove that if P denotes the set of Gödel numbers of all of the provable sentences, \tilde{P}^* is expressible in \mathcal{L} and \mathcal{L} is correct, then there is a true sentence of \mathcal{L} that is not provable in \mathcal{L} .

END OF PAPER

V