UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

۰. •

ġ,

Mathematics C381: Logic

COURSE CODE	: MATHC381
UNIT VALUE	: 0.50
DATE	: 13-MAY-03
TIME	: 14.30
TIME ALLOWED	: 2 Hours

03-C0926-3-70 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Consider an algebraic theory with operational type $\Omega := \{m_2\}$ and unique axiom mxy = myx. Show that the equation mxx = x is not provable.

Suppose that S is a consistent set of propositions (of the propositional calculus) which is complete in the following sense: for every proposition s either $s \in S$ or $\neg s \in S$. Show that S has a model.

Using only the axioms of the propositional calculus, its rule of inference and the Deduction Theorem, show that

$$\vdash ((p \Rightarrow q) \Rightarrow (\neg q \Rightarrow \neg p)).$$

2. Sketch an argument showing that every consistent theory (in a countable language) can be enlarged to a complete consistent theory having witnesses.

Consider a first order theory with operational type $\Omega = \{m_2\}$ and a unique axiom

$$(\exists x)(mxx = x).$$

Explain why this theory does not have witnesses. Enlarge the theory so that the axiom has a witness.

3. Show that in ZFC for every set x there is a bijection of x onto an ordinal. Describe such a bijection for the set of all integers. Show that $2^m > m$ for every cardinal number m.

MATHC381

PLEASE TURN OVER

٠.

4. Write a program for the register machine computing the function

r(m, n) = remainder when m is divided by n, provided that n > 0

For simplification, the program may use, in addition to the basic instructions, also the instruction 'copy the content of R_k to R_l and go to S_j ', denoted by $S_i \xrightarrow{R_k \to R_l} S_j$. Explain how your program works in the cases (a) m = 10, n = 4 and (b) m = 7, n = 0.

Use the previous part of the question to answer the following questions, stating the results that you use.

- (a) Is r(m, n) recursive?
- (b) Is r(m, n) **PA** definable?
- 5. Suppose that \mathcal{T} is a mathematical theory containing the Peano Arithmetic. Explain the definition of a predicate of \mathcal{T} which describes the meta-statement " \mathcal{T} is consistent". (Any predicate of \mathcal{T} used in the definition should be defined as well.) State and prove Gödel's second incompleteness theorem. (The fixed point lemma and/or properties of the Gödel's sentence may be stated without a proof.)