UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

Abstract

B.Sc. M.Sci.

Mathematics C381: Logic

COURSE CODE : MATHC381

UNIT VALUE : 0.50

DATE : 13-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Consider an algebraic theory with operational type $\Omega:=\left\{m_{2}\right\}$ and unique axiom $m x y=m y x$. Show that the equation $m x x=x$ is not provable.
Suppose that \mathcal{S} is a consistent set of propositions (of the propositional calculus) which is complete in the following sense: for every proposition s either $s \in \mathcal{S}$ or $\neg s \in \mathcal{S}$. Show that \mathcal{S} has a model.

Using only the axioms of the propositional calculus, its rule of inference and the Deduction Theorem, show that

$$
\vdash((p \Rightarrow q) \Rightarrow(\neg q \Rightarrow \neg p)) .
$$

2. Sketch an argument showing that every consistent theory (in a countable language) can be enlarged to a complete consistent theory having witnesses.
Consider a first order theory with operational type $\Omega=\left\{m_{2}\right\}$ and a unique axiom

$$
(\exists x)(m x x=x) .
$$

Explain why this theory does not have witnesses. Enlarge the theory so that the axiom has a witness.
3. Show that in ZFC for every set x there is a bijection of x onto an ordinal.

Describe such a bijection for the set of all integers.
Show that $2^{m}>m$ for every cardinal number m.
4. Write a program for the register machine computing the function

$$
r(m, n)=\text { remainder when } m \text { is divided by } n \text {, provided that } n>0
$$

For simplification, the program may use, in addition to the basic instructions, also the instruction 'copy the content of R_{k} to R_{l} and go to S_{j} ', denoted by $S_{i} \xrightarrow{R_{k} \rightarrow R_{l}} S_{j}$. Explain how your program works in the cases (a) $m=10, n=4$ and (b) $m=7, n=$ 0.

Use the previous part of the question to answer the following questions, stating the results that you use.
(a) Is $r(m, n)$ recursive?
(b) Is $r(m, n)$ PA definable?
5. Suppose that \mathcal{T} is a mathematical theory containing the Peano Arithmetic. Explain the definition of a predicate of \mathcal{T} which describes the meta-statement " \mathcal{T} is consistent". (Any predicate of \mathcal{T} used in the definition should be defined as well.) State and prove Gödel's second incompleteness theorem. (The fixed point lemma and/or properties of the Gödel's sentence may be stated without a proof.)

