UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

M.Sci.

٦,

in)

Mathematics C397: Lie groups, Lie algebras and supersymmetry

COURSE CODE	MATHC397	
UNIT VALUE	0.50	
DATE	28-APR-05	
TIME	14.30	
TIME ALLOWED	2 Hours	

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Let **g** be a finite dimensional Lie algebra over \mathbb{F} . Define the Killing form $\beta_{\mathbf{g}}$ of **g**, and prove that for all $X, Y, Z \in \mathbf{g}$,

$$\beta_{\mathbf{g}}(X, [Y, Z])) = \beta_{\mathbf{g}}(Y, [Z, X])).$$

Show that if $\mathbf{a} \triangleleft \mathbf{g}$ then $\mathbf{a}^{\perp} \triangleleft \mathbf{g}$ where $\mathbf{a}^{\perp} = \{B \in \mathbf{g} : \forall A \in \mathbf{a}, \beta_{\mathbf{g}}(A, B) = 0\}$. If \mathbf{g} is simple deduce that *either* (i) $\beta_{\mathbf{g}}$ is nondegenerate or (ii) $\beta_{\mathbf{g}} \equiv 0$. Prove that $\mathbf{sl}_3(\mathbb{F})$ is simple.

2. The following elements X, Y, Z form an F-basis for the Lie algebra $\mathcal{O}(3, \mathbb{F})$;

$$X = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} ; Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Write down the relations which hold between X, Y, Z under Lie bracket, and hence compute the Killing form of $\mathcal{O}(3, \mathbb{F})$ in the coordinate system of $\{X, Y, Z\}$.

If $\varphi : \mathcal{O}(3,\mathbb{F}) \to \mathbf{gl}_{\mathbb{F}}(V)$ is a representation of $\mathcal{O}(3,\mathbb{F})$, write down the Casimir operator C_{φ} of φ and show by direct computation that

$$C_{\varphi}\varphi(X) = \varphi(X)C_{\varphi}.$$

Deduce that $C_{\varphi}\varphi(\xi) = \varphi(\xi)C_{\varphi}$ for all $\xi \in \mathcal{O}(3,\mathbb{F})$.

3. For any nonnegative half integer j define the spin j representation (j) of $sl_2(\mathbb{F})$, and show how to interpret the adjoint representation of $sl_2(\mathbb{F})$ as a spin representation. Prove that

$$(j)\otimes (\frac{1}{2})\cong (j-\frac{1}{2})\oplus (j+\frac{1}{2}).$$

Hence derive a corresponding decomposition formula for $(j) \otimes (1)$, stating clearly any uniqueness statement about $sl_2(\mathbb{F})$ that you use.

PLEASE TURN OVER

MATHC397

4. Let **g** be a finite dimensional nondegenerate Lie algebra over $\overline{\mathbb{F}}$ and let (V, φ) be a finite dimensional representation of **g**.

Explain what is meant by a 1-cocycle of **g** with values in (V, φ) , and explain also what is meant by saying that such a 1-cocycle is trivial.

Furthermore, if (V, φ) is simple and the Casimir operator C_{φ} of (V, φ) is nonzero, show that any 1-cocycle of **g** with values in (V, φ) is trivial.

Explain what is meant by the Whitehead property for g.

Let ${\bf g}$ have the Whitehead property; given a short exact sequence of ${\bf g}\text{-representations}$ over $\bar{\mathbb{F}}$

$$0 \to (U_1, \alpha_1) \to (W, \psi) \to (U_2, \alpha_2) \to 0$$

show that $(W, \psi) \cong (U_1, \alpha_1) \oplus (U_2, \alpha_2)$.

5. Let \mathbf{g} be a Lie algebra of finite dimension over \mathbb{C} . Explain the distinction between the following sorts of representation of \mathbf{g} ;

(i) (\mathbb{C}, \mathbb{C}) -representation; (ii) (\mathbb{R}, \mathbb{C}) -representation; (iii) (\mathbb{R}, \mathbb{R}) -representation. Also describe a 1-1 correspondence

 $\{(\mathbb{R}, \mathbb{C}) \text{-representations of } \mathbf{g}\} \Leftrightarrow \{(\mathbb{C}, \mathbb{C}) \text{-representations of } \mathbf{g} \oplus \bar{\mathbf{g}}\}.$

Describe by means of bispinors the classification of

(i) simple (\mathbb{R}, \mathbb{C}) -representations of $sl_2(\mathbb{C})$, and

(ii) simple (\mathbb{R}, \mathbb{R}) -representations of $sl_2(\mathbb{C})$.

Viewed as (\mathbb{R}, \mathbb{R}) -representations of $sl_2(\mathbb{C})$ the *Majorana* representation \mathcal{M} and *vector* representation \mathcal{V} are described by

$$\mathcal{M} = (rac{1}{2}, 0) \oplus (0, rac{1}{2}) \;\; ; \;\; \mathcal{V} = (rac{1}{2}, rac{1}{2}).$$

By using the bispinor Clebsch-Gordan Theorem calculate the bispinor decompositions of both $\mathcal{M} \otimes \mathcal{V}$ and $\mathcal{V} \otimes \mathcal{V}$.

MATHC397

END OF PAPER

ŗ