UNIVERSITY COLLEGE LONDON

University of London
1

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.
,

Mathematics 2503: Introductory Mathematical Biology

COURSE CODE : MATH2503

UNIT VALUE : 0.50

DATE : 29-APR-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Suppose that a drug is administered to a patient through a feeding tube at rate γ (i.e. it accumulates in the stomach at rate γ). It is then transfered from the stomach to the bloodstream at rate α and there is eliminated by enzymes at rate $\beta \neq \alpha$.
(a) Draw a network showing the transfer process involved in the model.
(b) Write down suitable differential equations for the model using $S(t)$ for the stomach concentration at time time t, and $B(t)$ for the bloodstream concentration at time t.
(c) Show that $S(t)=\frac{\gamma}{\alpha}\left(1-e^{-\alpha t}\right)$.
(d) Hence solve the equation for $B(t)$ explicitly. What happens to the concentrations as $t \rightarrow \infty$?
(e) When $\alpha=2 \beta$ find the time $T>0$ taken for the concentration of the drug in the stomach to equal the concentration in the bloodstream.
2. (a) Explain in a couple of sentences what is meant by mass action reaction velocities.

Consider the (hypothetical) reaction scheme

$$
A+X \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} 3 X
$$

The concentration a of the chemical A is maintained constant.
(b) Write down the differential equation for the time evolution of $x(t)$, the concentration of X.
(c) Solve explicitly the differential equation obtained in the previous part (b), assuming that $x(0)=x_{0}$.
(d) By plotting $d x / d t$ versus x show that the concentration always approaches a stable steady state x^{*} as $t \rightarrow \infty$ and find x^{*} in terms of k_{1}, k_{-1} and a.
(e) Use part (d) to plot x as a function of time for the two initial conditions $x_{0} \in\left(0, \sqrt{\frac{k_{1} a}{3 k_{-1}}}\right)$ and $x_{0} \in\left(\sqrt{\frac{k_{1} a}{3 k_{-1}}}, \sqrt{\frac{k_{1} a}{k_{-1}}}\right)$.
3. Consider in figure 1 the transfer of a tracer between the bloodstream (C1) and tissue (C2) and its removal from the bloodstream for excretion. Suppose that the concentration of the drug in the blood at time $t \geqslant 0$ is $x_{1}(t)$ and in the tissue is $x_{2}(t)$, and that $x_{1}(0)=x_{10}, x_{2}(0)=0$. The transfer rates $f_{12}=3 x_{1}, f_{21}=2 x_{2}$ and the excretion rate is $f_{10}=4 x_{1}$. The tracer is not modified in the compartments or during the transfer between compartments.

Figure 1: Figure for Q1
(a) Write down the differential equations for x_{1}, x_{2} in matrix form $\dot{x}=M x$ where $x=\left(x_{1}, x_{2}\right)^{T}$.
(b) Find the eigenvalues of M and two linearly independent eigenvectors y_{1}, y_{2}.
(c) By writing $\left(x_{1}(t), x_{2}(t)\right)$ as a time-dependent sum of y_{1}, y_{2} show that if $x_{1}(0)=$ 1 and $x_{2}(0)=0$ then

$$
x_{1}(t)=\frac{1}{7}\left(e^{-t}+6 e^{-8 t}\right),
$$

and find a similar expression for $x_{2}(t)$.
(d) Sketch the phase plane (i.e. solution curves in (x_{1}, x_{2})-space) to indicate what happens to solutions $\left(x_{1}(t), x_{2}(t)\right)$ as $t \rightarrow \infty$ for different initial conditions.
4. Consider the 1-dimensional diffusion of a chemical C through a membrane of thickness h and diffusion constant D spanning the region $0 \leqslant x \leqslant h$. For $x \leqslant 0$ the concentration of C is maintained at 0 , and for $x \geqslant h$ the concentration of C is also maintained at 0 . Initially the chemical P is present at concentration $C_{0}(x)$ within the membrane.
(a) Write down the diffusion equation for the concentration $C(x, t)$ of C for $x \in$ $[0, h]$ and $t>0$, together with the boundary conditions and initial conditions that $C(x, t)$ must satisfy.
(b) Using separation of variables, or otherwise, show that the concentration $C(x, t)$ satisfies

$$
C(x, t)=\sum_{k=1}^{\infty} a_{k} \sin \left(\frac{k \pi x}{h}\right) \exp \left(-\frac{k^{2} \pi^{2} D}{h^{2}} t\right),
$$

and find the a_{k} when $C_{0}(x)=\alpha(1-x / h)$. (You may use that

$$
\int_{0}^{h} \sin \left(\frac{k \pi x}{h}\right) \sin \left(\frac{m \pi x}{h}\right) \mathrm{d} x=\frac{h}{2} \delta_{m k}
$$

where $\delta_{m k}=1$ if $m=k$ and $\delta_{m k}=0$ if $m \neq k$.)
(c) Now suppose that in a new scenario, for $x \leqslant 0$ the concentration of C is maintained at a new value constant α, but that for $x \geqslant h$ the concentration of C is maintained at 0 as before. Initially there is no C present in the membrane. Find the new concentration as a function of x and t. (Hint: you may find it helpful to consider the new variable $\left.U(x, t)=C_{0}(x)-C(x, t)\right)$.
5. Consider the following set of reactions:

$$
\begin{array}{rll}
\frac{1}{2} \mathrm{glc} & \xrightarrow{J_{3}} \mathrm{Pyr}+\mathrm{NADH}+\mathrm{ATP} \\
\mathrm{Pyr}+\mathrm{NADH} & \xrightarrow{\mathrm{~J}_{2}} & \mathrm{Lac} \\
\mathrm{Pyr} & \xrightarrow{J_{3}} & \mathrm{AcCoA}+\mathrm{NADH}+\mathrm{CO}_{2} \\
\mathrm{Pyr} & \xrightarrow{J_{3}} & \mathrm{AcCoA}+\mathrm{For} \\
\mathrm{AcCoA} & \xrightarrow{J_{5}} & \mathrm{Ac}+\mathrm{ATP} \\
\mathrm{AcCoA}+2 \mathrm{NADH} & \xrightarrow{J_{6}} & \mathrm{Et}
\end{array}
$$

(Here J_{i} is the steady state flux for the i th reaction in the list.)
(a) Write down a stoichiometric matrix for the closed reaction system.
(b) Write down a stoichiometric matrix for the open reaction system.
(c) Suppose that the steady state fluxes J_{1}, J_{2}, J_{4} are measured in an experiment. Find all possible values for J_{3}, J_{5}, J_{6}.
6. The stationary flux J of an ion A of valency z through a membrane thickness h is given by

$$
J=-D\left(\frac{d C(x)}{d x}+\frac{z}{V_{0}} C(x) \frac{d V(x)}{d x}\right)
$$

where D, V_{0} are constants, $x \in[0, h]$ is position within the membrane, $C(x)$ is the concentration of the ion and $V(x)$ is the voltage at x.
Show that under the constant field assumption that the stationary flux is

$$
J=\frac{-z P_{A} V_{m}}{V_{0}}\left(\frac{\left(\left[A^{2}\right] \exp \left(z V_{m} / V_{0}\right)-\left[A^{1}\right]\right)}{\exp \left(z V_{m} / V_{0}\right)-1}\right)
$$

where $P_{A}=D / h$ is the membrane permeability to ion $A,\left[A^{1}\right]=C(0, t)$ is the concentration of A at $x=0,\left[A^{2}\right]=C(h, t)$ is the concentration of A at $x=h$ and $E=-V_{m} / h$ is the constant electric field.
Now suppose that on either side of the membrane there is an ionic solution of sodium chloride $\mathrm{Na}^{+} \mathrm{Cl}^{-}$; at concentration $\left[\mathrm{Na}^{+} \mathrm{Cl}^{-}\right]_{1}$ at $x=0$ and $\left[\mathrm{Na}^{+} \mathrm{Cl}^{-}\right]_{2}$ at $x=h$. Let $P_{N a}$ be the permeability of the membrane to sodium ions Na^{+}, and $P_{C l}$ the permeability of the membrane to chloride ions Cl^{-}.
(a) Find the final potential across the membrane in terms of the final concentrations $\left[\mathrm{Na}_{F}^{1}\right],\left[\mathrm{Na}_{F}^{2}\right]$ and $\left[\mathrm{Cl}_{F}^{1}\right],\left[\mathrm{Cl}_{F}^{2}\right]$ if the membrane is impermeable to sodium ions.
(b) What is the final state of the system if the membrane is made slightly permeable to sodium?

