UNIVERSITY COLLEGE LONDON

University of London

},

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

1

B.Sc. M.Sci.

X

Mathematics 2503: Introductory Mathematical Biology

COURSE CODE	: MATH2503
UNIT VALUE	: 0.50
DATE	: 29-APR-05
TIME	: 14.30

TIME ALLOWED : 2 Hours

05-C0902-3-30 © 2005 University College London

e ...

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Suppose that a drug is administered to a patient through a feeding tube at rate γ (i.e. it accumulates in the stomach at rate γ). It is then transferred from the stomach to the bloodstream at rate α and there is eliminated by enzymes at rate $\beta \neq \alpha$.
 - (a) Draw a network showing the transfer process involved in the model.
 - (b) Write down suitable differential equations for the model using S(t) for the stomach concentration at time time t, and B(t) for the bloodstream concentration at time t.
 - (c) Show that $S(t) = \frac{\gamma}{\alpha}(1 e^{-\alpha t}).$
 - (d) Hence solve the equation for B(t) explicitly. What happens to the concentrations as $t \to \infty$?
 - (e) When $\alpha = 2\beta$ find the time T > 0 taken for the concentration of the drug in the stomach to equal the concentration in the bloodstream.
- 2. (a) Explain in a couple of sentences what is meant by mass action reaction velocities.

Consider the (hypothetical) reaction scheme

$$\begin{array}{c} k_1 \\ A + X \rightleftharpoons 3X \\ k_{-1} \end{array}$$

The concentration a of the chemical A is maintained constant.

- (b) Write down the differential equation for the time evolution of x(t), the concentration of X.
- (c) Solve explicitly the differential equation obtained in the previous part (b), assuming that $x(0) = x_0$.
- (d) By plotting dx/dt versus x show that the concentration always approaches a stable steady state x^* as $t \to \infty$ and find x^* in terms of k_1, k_{-1} and a.
- (e) Use part (d) to plot x as a function of time for the two initial conditions

$$x_0 \in \left(0, \sqrt{\frac{k_1 a}{3k_{-1}}}\right) \text{ and } x_0 \in \left(\sqrt{\frac{k_1 a}{3k_{-1}}}, \sqrt{\frac{k_1 a}{k_{-1}}}\right)$$

PLEASE TURN OVER

MATH2503

3. Consider in figure 1 the transfer of a tracer between the bloodstream (C1) and tissue (C2) and its removal from the bloodstream for excretion. Suppose that the concentration of the drug in the blood at time $t \ge 0$ is $x_1(t)$ and in the tissue is $x_2(t)$, and that $x_1(0) = x_{10}$, $x_2(0) = 0$. The transfer rates $f_{12} = 3x_1$, $f_{21} = 2x_2$ and the excretion rate is $f_{10} = 4x_1$. The tracer is not modified in the compartments or during the transfer between compartments.

Figure 1: Figure for Q1

- (a) Write down the differential equations for x_1, x_2 in matrix form $\dot{x} = Mx$ where $x = (x_1, x_2)^T$.
- (b) Find the eigenvalues of M and two linearly independent eigenvectors y_1, y_2 .
- (c) By writing $(x_1(t), x_2(t))$ as a time-dependent sum of y_1, y_2 show that if $x_1(0) = 1$ and $x_2(0) = 0$ then

$$x_1(t) = \frac{1}{7}(e^{-t} + 6e^{-8t}),$$

and find a similar expression for $x_2(t)$.

(d) Sketch the phase plane (i.e. solution curves in (x_1, x_2) -space) to indicate what happens to solutions $(x_1(t), x_2(t))$ as $t \to \infty$ for different initial conditions.

MATH2503

CONTINUED

A.

- 4. Consider the 1-dimensional diffusion of a chemical C through a membrane of thickness h and diffusion constant D spanning the region $0 \le x \le h$. For $x \le 0$ the concentration of C is maintained at 0, and for $x \ge h$ the concentration of C is also maintained at 0. Initially the chemical P is present at concentration $C_0(x)$ within the membrane.
 - (a) Write down the diffusion equation for the concentration C(x,t) of C for $x \in [0, h]$ and t > 0, together with the boundary conditions and initial conditions that C(x, t) must satisfy.
 - (b) Using separation of variables, or otherwise, show that the concentration C(x, t) satisfies

$$C(x,t) = \sum_{k=1}^{\infty} a_k \sin\left(\frac{k\pi x}{h}\right) \exp\left(-\frac{k^2 \pi^2 D}{h^2}t\right),$$

and find the a_k when $C_0(x) = \alpha(1 - x/h)$. (You may use that

$$\int_0^h \sin\left(\frac{k\pi x}{h}\right) \sin\left(\frac{m\pi x}{h}\right) \, \mathrm{d}x = \frac{h}{2} \delta_{mk}$$

where $\delta_{mk} = 1$ if m = k and $\delta_{mk} = 0$ if $m \neq k$.)

- (c) Now suppose that in a new scenario, for $x \leq 0$ the concentration of C is maintained at a new value constant α , but that for $x \geq h$ the concentration of C is maintained at 0 as before. Initially there is no C present in the membrane. Find the new concentration as a function of x and t. (Hint: you may find it helpful to consider the new variable $U(x,t) = C_0(x) C(x,t)$).
- 5. Consider the following set of reactions:

$$\begin{array}{rcl} \frac{1}{2} \mathrm{glc} & \stackrel{J_1}{\rightarrow} & \mathrm{Pyr} + \mathrm{NADH} + \mathrm{ATP} \\ \mathrm{Pyr} + \mathrm{NADH} & \stackrel{J_2}{\rightarrow} & \mathrm{Lac} \\ & \mathrm{Pyr} & \stackrel{J_3}{\rightarrow} & \mathrm{AcCoA} + \mathrm{NADH} + \mathrm{CO}_2 \\ & \mathrm{Pyr} & \stackrel{J_4}{\rightarrow} & \mathrm{AcCoA} + \mathrm{For} \\ & \mathrm{AcCoA} & \stackrel{J_5}{\rightarrow} & \mathrm{Ac} + \mathrm{ATP} \\ \mathrm{AcCoA} + 2\mathrm{NADH} & \stackrel{J_6}{\rightarrow} & \mathrm{Et} \end{array}$$

(Here J_i is the steady state flux for the *i*th reaction in the list.)

- (a) Write down a stoichiometric matrix for the closed reaction system.
- (b) Write down a stoichiometric matrix for the open reaction system.
- (c) Suppose that the steady state fluxes J_1, J_2, J_4 are measured in an experiment. Find all possible values for J_3, J_5, J_6 .

MATH2503

PLEASE TURN OVER

6. The stationary flux J of an ion A of valency z through a membrane thickness h is given by

$$J = -D\left(\frac{dC(x)}{dx} + \frac{z}{V_0}C(x)\frac{dV(x)}{dx}\right)$$

where D, V_0 are constants, $x \in [0, h]$ is position within the membrane, C(x) is the concentration of the ion and V(x) is the voltage at x.

Show that under the constant field assumption that the stationary flux is

$$J = \frac{-zP_A V_m}{V_0} \left(\frac{([A^2] \exp(zV_m/V_0) - [A^1])}{\exp(zV_m/V_0) - 1} \right)$$

where $P_A = D/h$ is the membrane permeability to ion A, $[A^1] = C(0,t)$ is the concentration of A at x = 0, $[A^2] = C(h, t)$ is the concentration of A at x = h and $E = -V_m/h$ is the constant electric field.

Now suppose that on either side of the membrane there is an ionic solution of sodium chloride Na⁺Cl⁻; at concentration $[Na^+Cl^-]_1$ at x = 0 and $[Na^+Cl^-]_2$ at x = h. Let P_{Na} be the permeability of the membrane to sodium ions Na⁺, and P_{Cl} the permeability of the membrane to chloride ions Cl⁻.

- (a) Find the final potential across the membrane in terms of the final concentrations $[Na_F^1]$, $[Na_F^2]$ and $[Cl_F^1]$, $[Cl_F^2]$ if the membrane is impermeable to sodium ions.
- (b) What is the final state of the system if the membrane is made slightly permeable to sodium?

MATH2503

V