UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ř

Mathematics M311: Introduction to Second-order Elliptic Partial Differential Equations

COURSE CODE : MATHM311

UNIT VALUE : 0.50

DATE : 08-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

03-C0961-3-30 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- (a) Suppose that u ∈ L¹_{loc}(ℝⁿ). Define the notion of the weak partial derivative u_{xi} of u and show that if u, v ∈ L¹(ℝ), u_{xi} exists and u_{xi} ∈ L¹(ℝ) then (u * v)_{xi} = u_{xi} * v.
 (b) Find the weak partial derivative u_{x1} of the function u(x₁, x₂) = √|x₁x₂|.
- 2. (a) Give the notion of the mean value property of a locally integrable function in an open set U and show that weak solutions of Laplace's equation necessarily have this property.
 - (b) Show that there is no continuous function u on

$$\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 \le 1\}$$

which is harmonic on

$$U := \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : 0 < x_1^2 + x_2^2 + x_3^2 < 1 \}$$

and satisfies u(x) = |x| whenever $x \in \partial U$.

3. (a) State the Gagliardo-Nirenberg-Sobolev inequality and prove it for p = 1.

(b) Use the Gagliardo-Nirenberg-Sobolev inequality and Morrey's inequality to find out for which k it is true that every function from $H^k(\mathbb{R}^3)$ is equivalent to a continuous function.

4. (a) State and prove the Lax-Milgram Theorem.

(b) Let $U = B_{0,1}$ be the unit disk in the plane and consider the partial differential operator $Lu = -u_{xx} - u_{yy} - (gu_x)_y$, where g(x, y) = 1 if $x \ge y$ and g(x, y) = 0 otherwise. Use the Lax-Milgram theorem to show that the boundary value problem

$$\begin{cases} Lu + u = 1 & \text{in} & U \\ u = 0 & \text{on} & \partial U \end{cases}$$

has a weak solution in $H_0^1(U)$.

MATHM311

PLEASE TURN OVER

5. (a) Suppose that Lu is an elliptic partial differential operator (in divergence form) on an open subset U of \mathbb{R}^n with coefficients belonging to $C^{m+1}(U)$ and that $f \in H^m_{loc}(U)$. State a result giving the maximal regularity (in the sense of belonging to $H^k_{loc}(U)$ spaces) of any weak solution of the equation

$$Lu = f$$
 in U

and assuming that it holds for m = 0 prove it for all other m.

(b) Use the result from (a) to find the largest k for which every weak solution u of

 $-\Delta u + ((2 + \cos(xyz))^{3/2}u_x)_y - (|\sin(xyz)|^{5/2}u_y)_z = 1 \quad \text{in } \mathbb{R}^3$

belongs to $H_0^k(U)$.

MATHM311

END OF PAPER

ĩ

ŧ