University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)M.Sc. M.Sci.

Mathematics C395: Graph Theory and Combinatorics

COURSE CODE : MATHC395

UNIT VALUE : 0.50

DATE : 16-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Give the definition of a connected component of a graph. Assume that the graph $G(V, E)$ contains no cycle. Show that the number of connected components of G is $|V|-|E|$.
(b) Assume T is a tree with vertex set $[n], n \geqslant 3$. Define the Prüfer code of T. Find the tree whose Prüfer code is ($7,3,3,1,7,3$).
(c) Give the definition of a bipartite graph. Show that a graph is bipartite if and only if it contains no odd cycle.
2. (a) State and prove the necessary and sufficient condition for the existence of an Euler circuit in a graph.
(b) Assume G is a graph on $n \geqslant 3$ vertices with $\delta(G) \geqslant n / 2$. Show that G contains a Hamilton cycle.
(c) Give an example of a non-planar graph that has no subgraph isomorphic to K_{5} or $K_{3,3}$.
3. (a) State the König-Hall theorem and use it to prove Hall's theorem on distinct representatives.
(b) Give the definition of the chromatic number of a graph. Show that the chromatic number of a planar graph is at most 5 .
(c) State Euler's formula for planar graphs. Prove that $K_{3,3}$ is not planar.
4. (a) Define the Turán graph $T_{r}(n)$. State Turán's theorem. Prove that among all r-partite graphs on n vertices, the Turán graph has the largest number of edges.
(b) State and prove Mantel's theorem.
(c) Show that in every Red Blue colouring of the edges of K_{n} there is a monochromatic spanning tree.
5. (a) Define the k-tuple Ramsey number $R^{k}(s, t)$ and prove that it is finite, assuming the finiteness of the usual Ramsey numbers $R(s, t)$.
(b) Give the definition of an antichain. Assume \mathcal{A} is an antichain on ground set X. Is the set $\mathcal{A}^{*}=\{X \backslash A: A \in \mathcal{A}\}$ an antichain? Justify your answer. When $\mathcal{P}([9])$ is decomposed into symmetric chains, how many chains are there of size 10 , of size 8 ?
(c) State and prove the Erdös-Ko-Rado theorem.
