UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

.

B.Sc. B.Sc.(Econ)M.Sc. M.Sci.

V

¥

Mathematics C395: Graph Theory and Combinatorics

COURSE CODE	: MATHC395
UNIT VALUE	: 0.50
DATE	: 16-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Give the definition of a connected component of a graph. Assume that the graph G(V, E) contains no cycle. Show that the number of connected components of G is |V| |E|.
 - (b) Assume T is a tree with vertex set [n], $n \ge 3$. Define the Prüfer code of T. Find the tree whose Prüfer code is (7, 3, 3, 1, 7, 3).
 - (c) Give the definition of a bipartite graph. Show that a graph is bipartite if and only if it contains no odd cycle.
- 2. (a) State and prove the necessary and sufficient condition for the existence of an Euler circuit in a graph.
 - (b) Assume G is a graph on $n \ge 3$ vertices with $\delta(G) \ge n/2$. Show that G contains a Hamilton cycle.
 - (c) Give an example of a non-planar graph that has no subgraph isomorphic to K_5 or $K_{3,3}$.
- 3. (a) State the König-Hall theorem and use it to prove Hall's theorem on distinct representatives.
 - (b) Give the definition of the chromatic number of a graph. Show that the chromatic number of a planar graph is at most 5.
 - (c) State Euler's formula for planar graphs. Prove that $K_{3,3}$ is not planar.
- 4. (a) Define the Turán graph $T_r(n)$. State Turán's theorem. Prove that among all *r*-partite graphs on *n* vertices, the Turán graph has the largest number of edges.
 - (b) State and prove Mantel's theorem.
 - (c) Show that in every Red Blue colouring of the edges of K_n there is a monochromatic spanning tree.

MATHC395

PLEASE TURN OVER

- 5. (a) Define the k-tuple Ramsey number $R^k(s,t)$ and prove that it is finite, assuming the finiteness of the usual Ramsey numbers R(s,t).
 - (b) Give the definition of an antichain. Assume A is an antichain on ground set X. Is the set A* = {X \ A : A ∈ A} an antichain? Justify your answer. When P([9]) is decomposed into symmetric chains, how many chains are there of size 10, of size 8?
 - (c) State and prove the Erdős-Ko-Rado theorem.

MATHC395

CONTINUED

P

٩