UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. B.Sc.(Econ)M.Sci.

1

Mathematics C395: Graph Theory and Combinatorics

COURSE CODE	: MATHC395
UNIT VALUE	: 0.50
DATE	: 05-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

05-C0943-3-80 © 2005 University College London

.

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

27

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Give the definition of a tree. Show that every connected graph contains a spanning tree.
 - (b) Find the tree whose Prüfer code is (2, 1, 5, 5, 1, 2, 3).
 - (c) Give the definition of an Euler circuit, and state the theorem on the existence of an Euler circuit in a graph.
- 2. (a) For which m and n does the complete bipartite graph $K_{m,n}$ contain a Hamilton cyle? Justify your answer.
 - (b) Assume $n \ge 4$ is even. Construct a graph G on n vertices with $\delta(G) = (n-2)/2$ that contains no Hamilton cycle.
 - (c) Give the definition of the chromatic number of a graph G. Show that every graph on n vertices and chromatic number k contains an independent set of size n/k.
- 3. (a) State the König-Hall theorem and use it to show that an r-regular $(r \ge 1)$ bipartite graph G with bipartition classes X and Y has a complete matching from X to Y.
 - (b) Decide whether (1, 1, 1, 2, 2, 3, 4, 5, 5) is the degree sequence of a graph. In case it is, make a drawing of such a graph.
 - (c) State Euler's formula for planar graphs. Prove that K_5 is not planar.
- 4. (a) Define the Turán graph $T_r(n)$. State Turán's theorem.
 - (b) Prove that among all r-partite graphs on n vertices, the Turán graph has the largest number of edges.
 - (c) State and prove the local LYM inequality. When does equality hold?
- 5. (a) Define the Ramsey numbers R(s,t). Show that R(3,3) = 6
 - (b) When P([8]) is decomposed into symmetric chains, how many chains are there? How many chains are there of size 9, of size 8, and of size 1?
 - (c) State and prove Fisher's inequality.

MATHC395

END OF PAPER