UNIVERSITY COLLEGE LONDON

University of London

.

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

١

Mathematics C395: Graph Theory and Combinatorics

COURSE CODE	: MATHC395
UNIT VALUE	: 0.50
DATE	: 17-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

04-C0938-3-90 © 2004 University College London

TURN OVER

ţ

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Prove that if G is a graph with $n \ge 3$ vertices and $\delta(G) \ge n/2$ then G contains a Hamilton cycle.
 - (b) Define the Turán graph $T_r(n)$.
 - (c) State Turán's Theorem.

(d) Prove that if G is a graph with n vertices and $\delta(G) > n/2$ then G contains a copy of K_3 .

- 2. (a) Define the chromatic number $\chi(G)$ of a graph G.
 - (b) Show that if G contains a complete subgraph on k vertices then $\chi(G) \ge k$.

(c) Show that if $\chi(G) = t$ then G contains an independent set of size at least n/t. (d) Let G be a graph with vertex set V, and let \overline{G} be the complementary graph: so

- $V(\overline{G}) = V$ and $E(\overline{G}) = V^{(2)} \setminus E(G)$. Prove that $\chi(G)\chi(\overline{G}) \ge |V|$.
- (e) Prove that if G is a graph then $\chi(G) \leq \Delta(G) + 1$.
- 3. (a) Define a symmetric chain in $\mathcal{P}([n])$.
 - (b) Prove that, for every $n \ge 1$, $\mathcal{P}([n])$ can be decomposed into symmetric chains.

(c) How many chains are there in a symmetric chain decomposition of $\mathcal{P}([5])$? How many of each length?

- (d) State and prove Sperner's Lemma.
- 4. (a) Define the lexicographic and colex orders on $[n]^{(r)}$.
 - (b) Write down the elements of $[4]^{(2)}$ in colex order.
 - (c) State the Kruskal-Katona Theorem, taking care to define all the terms.
 - (d) State and prove the Erdős-Ko-Rado Theorem on intersecting hypergraphs.
- 5. (a) Define the Ramsey numbers R(s,t) and prove that they exist for all s, t ≥ 2.
 (b) Prove that R(3,3) = 6.

(c) Prove that if the edges of K_{17} are coloured using three colours then there is a monochromatic triangle.

MATHC395

END OF PAPER