University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C395: Graph Theory and Combinatorics

COURSE CODE : MATHC395

UNIT VALUE : 0.50

DATE : 17-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Prove that if G is a graph with $n \geqslant 3$ vertices and $\delta(G) \geqslant n / 2$ then G contains a Hamilton cycle.
(b) Define the Turán graph $T_{r}(n)$.
(c) State Turán's Theorem.
(d) Prove that if G is a graph with n vertices and $\delta(G)>n / 2$ then G contains a copy of K_{3}.
2. (a) Define the chromatic number $\chi(G)$ of a graph G.
(b) Show that if G contains a complete subgraph on k vertices then $\chi(G) \geqslant k$.
(c) Show that if $\chi(G)=t$ then G contains an independent set of size at least n / t.
(d) Let G be a graph with vertex set V, and let \bar{G} be the complementary graph: so $V(\bar{G})=V$ and $E(\bar{G})=V^{(2)} \backslash E(G)$. Prove that $\chi(G) \chi(\bar{G}) \geqslant|V|$.
(e) Prove that if G is a graph then $\chi(G) \leqslant \Delta(G)+1$.
3. (a) Define a symmetric chain in $\mathcal{P}([n])$.
(b) Prove that, for every $n \geqslant 1, \mathcal{P}([n])$ can be decomposed into sýmmetric chains.
(c) How many chains are there in a symmetric chain decomposition of $\mathcal{P}([5])$? How many of each length?
(d) State and prove Sperner's Lemma.
4. (a) Define the lexicographic and colex orders on $[n]^{(r)}$.
(b) Write down the elements of $[4]^{(2)}$ in colex order.
(c) State the Kruskal-Katona Theorem, taking care to define all the terms.
(d) State and prove the Erdős-Ko-Rado Theorem on intersecting hypergraphs.
5. (a) Define the Ramsey numbers $R(s, t)$ and prove that they exist for all $s, t \geqslant 2$.
(b) Prove that $R(3,3)=6$.
(c) Prove that if the edges of K_{17} are coloured using three colours then there is a monochromatic triangle.
