UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C395: Graph Theory and Combinatorics

COURSE CODE	: MATHC395
UNIT VALUE	: 0.50
DATE	: 20-MAY-03
TIME	: 10.00
TIME ALLOWED	: 2 Hours

03-C0932-3-80 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Give the definition of a tree. Show that every tree with at least two vertices has at least two leaves.
 - (b) For which m and n is the complete bipartite graph $K_{m,n}$ planar?
 - (c) Decide whether (1, 1, 1, 2, 2, 3, 4, 5, 5) is the degree sequence of a graph. In case it is, make a drawing of such a graph.
- 2. (a) Give the definition of an Euler circuit, and state the theorem on the existence of an Euler circuit in a graph.
 - (b) Assume $n \ge 4$ is even. Construct a graph G on n vertices with $\delta(G) = (n-2)/2$ that contains no Hamilton cycle.
 - (c) Give the definition of the chromatic number, $\chi(G)$, of a graph G. Show that then $\chi(G) \leq \Delta(G) + 1$
- 3. (a) State the König-Hall theorem and use it to show that an r-regular $(r \ge 1)$ bipartite graph G with bipartition classes X and Y has a complete matching from X to Y.
 - (b) Construct a decomposition of the edge set of K_9 into edge-disjoint Hamilton cycles.
 - (c) State Euler's formula for planar graphs. Prove that K_5 is not planar.
- 4. (a) Define the Turán graph $T_r(n)$. State Turán's theorem.
 - (b) State and prove the LYM inequality.
 - (c) When $\mathcal{P}([8])$ is decomposed into symmetric chains, how many chains are there? How many chains are there of size 9, of size 8, and of size 7?
- 5. (a) Define the Ramsey numbers R(s,t). Show that $R(s,s) \ge 2^{s/2}$ if $s \ge 3$.
 - (b) Show that in every 3-colouring of the edges of K_{17} there is a monochromatic triangle.
 - (c) Give the definition of an antichain. State the strong form of Sperner's theorem.

MATHC395

END OF PAPER