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All questions may be attempted but only marks  obtained on the best four  solutions will 

count. 

The use of an electronic calculator is no t  permit ted in this examination.  

The fluid is incompressible and, except in Question 5, has constant density p. Grav- 
i tational acceleration is denoted by g throughout. The Coriolis parameter is denoted by 
f and is taken to be constant throughout. 

The shallow water equations can be written 

ut + uu~ + vuy - f v  = - g ~ x ,  

vt + uvx + vvv + f u  = - g v y ,  

Ht + (uH)~ + (vH)y  = O, 

where H is the total depth and ~(x, y, t) the free surface displacement. 

. (a) Use the three-dimensional continuity equation, the free surface boundary con- 
dition and the fact tha t  horizontal velocities are independent of depth to show 
that the vertical component of velocity associated with the shallow water equa- 
tions can be written 

w = - ( u x  + v D ( z -  7) + vt + + vv . 

(b) Hence, or otherwise, show that  the shallow water equations imply that  the 
fractional depth of a particle in a fluid column remains constant throughout 
any motion. 

(c) Similarly, or otherwise, show that  the shallow water equations imply tha t  the 
potential vorticity 

q = (vx - uy + f ) / H  

of a particle remains constant throughout any motion. 

(d) Hence, or otherwise, describe briefly the mechanism whereby an infinitesimal 
sinusoidal disturbance to a material line of particles initially lying along a 
straight isobath propagates along the isobath. 
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. (a) From the linearised shallow water equations for a fluid of constant undisturbed 

depth H0, so H -- H0 + 7, derive the linearised equation for the conservation 
of potential vorticity, i.e. 

=0, 

where ( = v~ - uy and f is constant. 
[ - ' ~  J. 1 " -  

[b) Using ~m~ result, or otherwise, find the final s teady-state flow when the free 
surface displacement ~(x, t) evolves from an initial s tate  of rest with 

¢ ( x ,  0) = 0, 0)  = - 0sgnz. 

(c) Show tha t  the increase in potential energy (per unit  width in the y-direction) 
of a fluid strip of length ~x when the surface moves from rll to 772 is 

1 2 ~Pg(rl2 - ~?2)~x. 

Hence show that  during the adjustment to a steady state in (b) the total 
potential  energy per unit width released is a 2 5pgrloa where a = (gHo)l /2/ f .  

(d) Show tha t  the kinetic energy per unit width of a strip of length 5x is 

lpHog2/-20?~)25x 

and hence tha t  the total  increase in kinetic energy during the adjustment in 
(b)  is 1 2 5PgYo a. 

(e) How much energy is "missing" and where has it gone? 

3. The quasigeostrophic potential vorticity equation can be written 

(0, + ¢~0~ - ¢~0~)(V2~ - F ~  + ~B) = 0, 

where F is a number measuring surface deformation, r/B(x , y) gives the shape of the 
lower boundary, and ¢ is a streamfunction for the motion. 

(a) Show that  when the flow field is unbounded and the bottom slopes uniformly 
so tha t  ~s = fly this equation admits f inite amplitude wave motion of the form 

¢ = A cos(kx + ly - at),  

where A, k, l and a are constants. Derive the dispersion relation for these 
waves. 

(b) Derive and sketch a geometric relationship in wavenumber space between the 

group and phase velocities of waves of fixed frequency a (and infinitesimal 
amplitude). 

(c) Use this relationship to describe the oblique reflection of a Rossby wave in the 

quarter plane x > 0, y > 0 which first reflects off the solid barrier y -- 0 and 
travels onwards to reflect off the solid barrier x = 0. 

CONTINUED MATHG304 

2 



4. A viscous fluid, occupying the region z < 0, is rotat ing at uniform angular speed f~ 
about the vertical Oz axis. A steady flow is driven by a constant  stress r:~ (where 

is a horizontal unit vector in the rotating frame) applied at the surface z = 0. 

The momentum and continuity equations for the flow can be written 

Ou 1Vp + uV2u ' - -  + ( u -  V ) u  + 2 f ~  A u = - 
0 t  p 

V . u = 0 ,  

where u is the velocity relative to the rotat ing frame, ~ is a vertical unit  vector, 
p is the pressure, p is the constant fluid density and u is the constant kinematic 
viscosity of the fluid. 

(a) Solve these equations to obtain the velocity components of the flow relative to 
the rotating axes. 

(b) Find the magnitude of the induced surface velocity and its direction relative 
to the applied stress. 

(c) Discuss the variation of the velocity with depth. 

5. The governing equations for a Boussinesq incompressible fluid can be written, for 
Oz vertical, as 

1 
u t + ( u . V ) u  - V p + a 2 ,  

P 
at + (u. V)a  + N2w = 0, 

V - u  = 0, 

where a = g(Sp/p) is the buoyancy acceleration and N 2 is the  buoyancy frequency. 

(a) Derive the internal wave equation for the pressure p, governing small oscilla- 
tions in a fluid when N 2 is constant. 

(b) Derive a geometric relation between the group and phase velocities of the waves. 

(c) Consider a vertically semi-infinite stratified fluid with constant N 2 above a 
sinusoidal boundary 

z = e s i n { k ( x - U t ) }  

with wavenumber k, height c << 1, and travelling in the positive x-direction at 
speed U. Discuss the form of the motion for N < kU and N > kU, obtaining 
the slope of the phase lines and the direction of energy propagation of any 
waves excited. 
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