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All  questions may  be a t t empted  but only marks  obtained on the best f o u r  solut ions  will 

count. 
The use o f  an electronic calculator is n o t  permi t t ed  in  this examina t ion .  

The fluid is incompressible and, except in Question 5, has constant density p. Grav- 
itational acceleration is denoted by g throughout.  The Coriolis parameter  is denoted by 
f and is taken to be constant throughout.  

The shallow water equations can be writ ten 

ut + uu~ + VUy -- f v  = -g~?~, 

vt + uv~ + vvy + f u  = -g~?y, 

Ht  + ( u g ) ~  + ( v g ) y  = O, 

where H is the total depth and ri(z, y, t) the free surface displacement. 

. (a) Use the three-dimensional continuity equation, the free surface boundary con- 
dition and the fact tha t  horizontal velocities are independent of depth to show 
that  the vertical component of velocity associated with the shallow water equa- 
tions can be written 

w = + v )(z - 7 )  + + + 

(b) Hence, or otherwise, show that  the shallow water equations imply that  the 
fractional depth of a particle in a fluid column remains constant  throughout 
any motion. 

(c) Similarly, or otherwise, show tha t  the shallow water equations imply that  the 
potential vorticity 

q = (v~ - uy + f ) / H  

of a particle remains constant throughout  any motion. 

(d) Hence, or otherwise, describe briefly the mechanism whereby an infinitesimal 
sinusoidal disturbance to a material  line of particles initially lying along a 
straight isobath propagates along the isobath. 
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. (a) From the  linearised shallow water equations for a fluid of constant undisturbed 
depth  Ho, so H = H0 + 7/, derive the linearised equation for the conservation 
of potent ia l  vorticity, i.e. 

- -  0 

t 

where ( = vx - uy and f is constant. 

(b) Using this  result, or otherwise, find the final steady-state flow when the free 
surface displacement rI(x, t) evolves from an initial s tate  of rest with 

~(x ,  0) = 0, n ( z ,  0) = - ~ 0 s g n z .  

(c) Show t h a t  the increase in potential  energy (per unit width in the y-direction) 
of a fluid strip of length 5x when the surface moves from rh to r]2 is 

1 2 ~Pg(rl2 - rI2)~x. 

Hence show tha t  during the adjustment  to a steady state in (b) the total  
potent ia l  energy per unit  width released is 3 2 5pg~loa where a = (gHo)l /2/ f .  

(d) Show tha t  the kinetic energy per unit  width of a strip of length 5x is 

lpHog2 f-2(r]~)25x 

and hence that  the total  increase in kinetic energy during the adjustment in 
1 2 (b) is -~pgrIoa. 

(e) How much energy is "missing" and where has it gone? 

3. The quasigeostrophic potential  vorticity equation can be writ ten 

(o, + ¢~ay  - C y a x ) ( v ~ ¢  - R e  + ~B) = 0, 

where F is a number measuring surface deformation, riB(x, y) gives the shape of the 
lower boundary,  and ¢ is a streamfunction for the motion. 

(a) Show tha t  when the flow field is unbounded and the bottom slopes uniformly 
so t h a t  rib ---- BY this equation admits  finite amplitude wave motion of the form 

¢ = A cos(kx + ly - at), 

where A, k, l and a are constants. Derive the dispersion relation for these 
waves. 

(b) Derive and sketch a geometric relationship in wavenumber space between the 
group and phase velocities of waves of fixed frequency a (and infinitesimal 
amplitude).  

(c) Use this  relationship to describe the oblique reflection of a Rossby wave in the 
quar ter  plane x > 0, y > 0 which first reflects off the solid barrier y -- 0 and 
travels onwards to reflect off the solid barrier x = 0. 
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4. A viscous fluid, occupying the region z < 0, is ro ta t ing at  uniform angular speed 
about the verticM Oz axis. A steady flow is driven by a constant  stress TS: (where 

is a horizontal unit vector in the rotating frame) applied at the surface z = 0. 

The momentum and continuity equations for the flow can be wri t ten  

Ou 1 V p  
- -  + ( u .  V ) u  + 2 ~  A u = - - -  + vV2u,  
Ot p 

V . u = 0 ,  

where u is the velocity relative to the rotating frame, ~ is a vertical unit vector, 
p is the pressure, p is the constant fluid density and v is the constant kinematic 
viscosity of the fluid. 

(a) Solve these equations to obtain the velocity components  of the flow relative to 
the rotat ing axes. 

(b) Find the magnitude of the induced surface velocity and its direction relative 
to the applied stress. 

(c) Discuss the variation of the velocity with depth. 

5. The governing equations for a Boussinesq incompressible fluid can be written, for 
Oz vertical, as 

1 
u t + ( u . V ) u  - V p + c r ~ ,  

P 
at + ( u .  V ) a +  N2w = 0, 

V - u  = 0, 

where a = g(Sp/p) is the buoyancy acceleration and N 2 is the buoyancy frequency. 

(a) Derive the internal wave equation for the pressure p, governing slow oscillations 
in a fluid when N 2 is constant. 

(b) Derive a geometric relation between the group and phase velocities of the waves. 

(c) Consider a vertically semi-infinite stratified fluid with constant N 2 above a 
sinusoidal boundary 

z = c s i n { k ( x - U t ) }  

with wavenumber k, height c << 1, and travelling in the positive x-direction at 
speed U. Discuss the form of the motion for N < kU and N > kU, obtaining 
the slope of the phase lines and the direction of energy propagation of any 
waves excited. 
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