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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

The fluid is incompressible and has constant density p. Gravitational acceleration is
denoted by g throughout. The Coriolis parameter is denoted by f throughout.

1. The shallow water equations can be written

U+ UU; +VUy — fU = —gng,
vy + uv + vvy + fu — gy,
Hi+ (uH). + (vH), = 0,

where H(z,y,t) is the total depth and 7(z, y,t) the free surface displacement.
(a) Show that the linearised shallow water momentum equations can be written
(B + f*)u = —g(nae + fny),

(Bt + v = —g(Mye — f1)-

(b) Consider the free modes in a channel of constant width L, bounded by rigid
walls at y = 0 and y = L, when the channel floor slopes linearly in the y-
direction so that the undisturbed depth is given by

Ho(z,y) = D(1 + sy/L),

for constants D and s, with s < 1.

Discuss the departures of these modes from their flat-bottomed (s = 0) form
and plot the leading order (in s) dispersion relation for the modes.

You may assume without proof that the governing equation for 7 of the form

n(z,y,t) = R{f(y) expli(kz — ot)]},
with k£ and o constants, is

d?n _

a2 +[(6® ~ f3)/c? — k* — fsk/(Lo)7 = 0,
where ¢? = gD.
You may ignore any waves whose frequency in the flat-bottomed case (s = 0)
is given by ¢ = £ f or 0 = +ck.
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2. The quasigeostrophic potential vorticity equation can be written

(at + "/’Iay - %3:)(‘72',0 - Fd} + nB) = 0;

where F is an order unity number, measuring free-surface effects, ng(z,y) gives the
shape of the lower boundary, and 1 is a streamfunction for the motion.

(a)

(b)

(b)

Solve this equation for the steady motion in the half-plane z > 0 when the
flow is bounded by an impermeable wall at z = 0, the flow far from the wall is
directed towards the wall and has uniform speed unity, and the lower boundary
slopes uniformly such that ng = By with 8 > 0.

Discuss the form of the solution for large (3, relating expressions for the mass
flux across planes x =constant to the flux across planes y =constant. Comment
briefly on the solution if 3 is negative.

Show that the quasigeostrophic potential vorticity equation (given in Question
2) admits finite amplitude wave motion of the form

9 = Acos(kz + ly — ot) (1)

when the flow field is unbounded and the bottom slopes uniformly such that
ns = By.

By linearising the quasigeostrophic potential vorticity equation and multiplying
by %, derive the energy conservation law

Et+V‘S—_—O,

where E = 1|Vy[? + 1LFy? and S = —¢ V4, — 1iBy>.

By averaging over a period (denoted by < - >) for a wave of form (1) show
that
<S>=cy, < E>,

where ¢, = V0o is the group velocity. Hence show that
< E>; +(c;- V)< E>=0,

and deduce that the energy of the motion travels with the group velocity.

Using the expression derived above for < S >, or otherwise, derive a diagram
showing the geometric relationship between the group and phase velocities of
waves of fixed frequency o.
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. By considering the Navier-Stokes equations for a layer of almost-inviscid fluid (of
kinematic viscosity v’) rotating rapidly (with angular speed 2Q2) about a vertical axis
Oz, derive the Ekman compatibility condition,

1 v 1
w= 5(5)2(% ~ Uy),

imposed on an interior flow by the Ekman layer on an impermeable, co-rotating
horizontal lower boundary. Here (z,y, z) are Cartesian co-ordinates and the corre-
sponding components of the interior velocity are (u, v, w).

. In a region sufficiently close to the equator that f can be approximated by By, the
constant-depth linearised shallow-water equations become (suitably non-dimensionalised)

1

U — 5?!’0 = =Nz,

1
v + —Q_yu = =T,

nt+uz+'uy=0.

Eliminating v and 7 gives the governing equation

1 1
Vet + Zy2'Ut — (Uzz + vyy)t — 5’0,_- = (0.

(a) Using the equation for v alone, find the dispersion relation for waves in an
unbounded domain.

(b) By considering the original system, show that v = 0 gives a non-trivial solution.

(c) Sketch the dispersion relation, showing intersections with axes, asymptotic
behaviour and turning points.

[You may use without proof the result that the solutions of the eigenvalue problem
1
Dy, + (A — Zy2)D =0, with D—0 as |y — oo,

are the parabolic cylinder functions D,(y), with A=n+1 forn=0,1,2,....]
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