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All  questions may  be attempted but only marks  obtained on the best f o u r  solutions will 
count. 

The use o f  an electronic calculator is n o t  permi t ted  in this examinat ion.  

The fluid is incompressible and has constant  density p. Gravi ta t ional  acceleration is 
denoted by g throughout. The Coriolis parameter  is denoted by f throughout .  

1. The  shallow water equations can be wri t ten 

ut + uu~ + vuy - f v  

vt + uv~ + vvy + f u 

g t  + (uH)x  + ( vH)y  

-- -g~?~, 

= - g ~ ? ~ ,  

0, 

where H ( x ,  y, t) is the total  depth and 77(x, y, t) the free surface displacement. 

(a) Show that  the linearised shallow water momentum equations can be writ ten 

(0,, + / 2 ) u  = + 

(0t, + / 2 ) v  = 

(b) Consider the free modes in a channel of constant  width L, bounded by rigid 
walls at y -- 0 and y = L, when the channel floor slopes linearly in the y- 
direction so that  the undisturbed depth is given by 

H o ( x , y )  = D(1 + s y / L ) ,  

for constants D and s, with s << 1. 

Discuss the departures of these modes from their f la t -bot tomed (s -- 0) form 
and plot the leading order (in s) dispersion relation for the modes. 

You may assume without proof t ha t  the governing equation for 77 of the form 

r/(x, y, t) = 7~{~(y) exp[i(kx - at)]}, 

with k and a constants, is 

d2---~ + [(a 2 - / 2 ) / c 2  - k 2 - f sk / (La)]~7 = O, 
dy 2 

where c 2 = gD. 

You may ignore any waves whose frequency in the f la t-bot tomed case (s = 0) 
is given by a : + f  or a = +ck.  
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2. The quasigeostrophic potent ia l  vorticity equation can be written 

(0t + ¢~0~ - %0x) (V2¢  - Fg; + ~B) = 0, 

where F is an order unity number,  measuring free-surface effects, ?~B(X, y) gives the 
shape of the lower boundary,  and ¢ is a streamfunction for the motion. 

(a) Solve this equat ion for the  steady motion in the half-plane x > 0 when the  
flow is bounded by an impermeable wall at x = 0, the flow far from the wall is 
directed towards the wall and has uniform speed unity, and the lower boundary 
slopes uniformly such t h a t  ~s = j3y with 13 > 0. 

(b) Discuss the form of the solution for large ~, relating expressions for the mass 
flux across planes x = c o n s t a n t  to the flux across planes y = c o n s t a n t .  Comment 
briefly on the solution if 13 is negative. 

. (a) Show tha t  the  quasigeostrophic potential  vorticity equation (given in Question 
2) admits  f i n i t e  a m p l i t u d e  wave motion of the form 

¢ = Acos(kx + l y  - a t )  (1) 

when the flow field is unbounded and the bot tom slopes uniformly such tha t  

(b) By linearising the quasigeostrophic potential  vorticity equation and multiplying 
by ¢,  derive the energy conservation law 

E t + V . S = 0 ,  

where E = 1 2 1 2 ~[V¢[ + ~ F ¢  and S = - e V e r  1~fl¢2. 

(c) By averaging over a period (denoted by < • >) for a wave of form (1) show 
tha t  

< S > =  cg < E >, 

where cg = V k a  is the group velocity. Hence show tha t  

< E > t + ( c g - V )  < E > = 0 ,  

and deduce tha t  the energy of the motion travels with the group velocity. 

(d) Using the expression derived above for < S >, or otherwise, derive a diagram 
showing the geometric relationship between the group and phase velocities of 
waves of fixed frequency a.  
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4. By considering the Navier-Stokes equations for a layer of almost-inviscid fluid (of 
kinematic viscosity u) rotating rapidly (with angular speed 2f~) about a vertical axis 
Oz, derive the Ekman compatibility condition, 

1 V 1 
w = ~ ( ~ ) ~ ( v =  - ~), 

imposed on an interior flow by the Ekman layer on an impermeable, co-rotating 
horizontal lower boundary. Here (x, y, z) are Cartesian co-ordinates and the corre- 
sponding components of the interior velocity are (u, v, w). 

5. In a region sufficiently close to the equator that  f can be approximated by 13y, the 
constant-depth linearised shallow-water equations become (suitably non-dimensionalised) 

1 
ut - ~ y v =  -f ix,  

1 
vt + ~yu = -rl~, 

rh + ux + vy = O. 

Eliminating u and rl gives the governing equation 

1 2 v,, ,  + ~ y  v, - (vx= + v ~ ) ,  - l v ~  = 0. 

(a) Using the equation for v alone, find the dispersion relation for waves in an 
unbounded domain. 

(b) By considering the original system, show that v = 0 gives a non-trivial solution. 

(c) Sketch the dispersion relation, showing intersections with axes, asymptotic 
behaviour and turning points. 

[You may use without proof the result that  the solutions of the eigenvalue problem 

D ~ + ( A - ~ y 2 ) D = O ,  with D---~0 as [y[---,oo, 

1 for n = 0,1, 2, .... ] are the parabolic cylinder functions Dn(y), with A = n + 5 
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