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All questions may be attempted but only marks obtained on the best four  solutions will 
count. 

The use of an electronic calculator is no t  permitted in this examination. 

The fluid is incompressible and, except in Question 5, has constant density p. Grav- 
itational acceleration is denoted throughout by g. The Coriolis parameter is denoted by 
f and is taken to be constant  throughout. 

The shallow water equations can be written 

ut + uu~ + vuy - f v  = -g~x ,  

vt + uv~ + vv ,  + f u  = -grly, 

H, + (uH)~ + (vH)~ = O, 

where H is the total depth  and r~(x, y, t) is the free surface displacement. 

. (a) Show that ,  when f is constant, the linearised momentum equations can be 
written 

(a ,  + f2)u = - g ( V v ,  - f-. f VV), 

where z is a uni t  vertical vector and x7 is the horizontal gradient operator. 

(b) Hence show tha t  for a fluid of constant undisturbed depth H0 (so H = H0 + r/) 
the displacement r/satisfies 

[(on - c2(,x  + = 0. 

where c 2 = gHo. 

(c) Derive an equation whose roots give the frequencies of the normal modes of 
oscillation of the free surface of a rotat ing shallow cylindrical basin of radius 
L. 

[You are given tha t  the solutions of 

r2R " + rR '  + (r 2 - m 2 ) R  = 0, 

finite at r = 0, are the Bessel functions, J,~(r).] 
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. (a) From the  linearised shallow water equations for a fluid of constant  und i s tu rbed  
dep th /70 ,  so H = / 4 o  + T], derive the linearised equation for the conservat ion 
of potent ia l  vorticity, i.e. 

where ~ = v~ - uy and f is constant.  

(b) Using th is  result, or otherwise, find the final s teady-sta te  flow w h e n  the  free 
surface displacement r/(x, t) evolves from an initial s ta te  of rest wi th  

~(x,0) = 0, ~(x,0) = -~0sgnx.  

(c) Show t h a t  the increase in potential  energy (per unit width in the y-direct ion)  
of a fluid strip of length 5x when the surface moves from ~1 to ~]2 is 

1 2 

Hence show that during the adjustment to a steady state in (b) the total 
potential energy per unit width released is 3 2 ~pg~o a where a = (gHo)l/2/f .  

(d) Show t h a t  the kinetic energy per unit  width of a strip of length 5x is 

1pHog2f-2(~7~)25x 

and hence tha t  the total  increase in kinetic energy during the ad ju s tmen t  ill 
(b) is 1 ~Pg~o a. 

(e) How much energy is "missing" and where has it gone? 
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3. The quasigeostrophic potential vorticity equation can be written 

(o~ + %6~o~ - %6~o~)(v2%6 - F%6 + ~ )  = 0, 

where F is a number  measuring surface deformation, rlB(x, y) gives the shape  of the 
lower boundary, and %6 is a streamfunction for the motion. 

(a) Show t h a t  when the  flow field is unbounded and the bo t tom slopes uniformly 
so that  rib = Py this equation admits  finite amplitude wave motion of t he  form 

%6 = A cos(kx + l y -  at), (1) 

where A, k, l and cr are constants. Derive the dispersion relation for these 
waves. 

(b) By linearising the quasigeostrophic potential vorticity equation and multiplying 
by %b, derive the energy conservation law 

E t + V . S = 0 ,  

where E = 1 2 1 2 _ . 

(c) By averaging over a period (denoted by < • >) for a wave of form (1) show 
that 

<S>=%<E>, 

where cg ---- Vk(r is the group velocity. Hence show that 

< E >~ +(%. V) < E >= O, 

and deduce that the energy of the motion travels with the group velocity. 

(d) Using the expression derived above for < S >, or otherwise, derive a diagram 
showing the geometric relationship between the group and phase velocities of 
waves of fixed frequency a. 
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4. A viscous fluid occupies the region z > 0 above a horizontal rigid plane z = 0. The 
plane is rotating with uniform angular speed ~ about the vertical axis Oz and the 
Cartesian axes Oxyz rotate with the plane. Far above the plane (z >> 1) the fluid 
velocity relative to these axes becomes horizontal with uniform speed U in the Ox 
direction. 

The momentum and continuity equations for the flow can be written 

Ou 

P 

where u is the velocity relative to the rota t ing frame, k is a vertical unit vector, 
p is the pressure, p is the constant fluid density and u is the constant kinematic 
viscosity of the fluid. 

(a) Solve these equations to obtain the velocity components of the steady flow 
relative to the rotating axes. 

(b) Describe the variation with height of this  velocity field. 

5. The governing equations for a Boussinesq incompressible fluid can be written, for 
Oz vertical, as 

1 
+ ( u .  V ) u  - : V p  + 

P 
at + (u .  ~)o- + N2w = O, 

V . u  = 0, 

where cr = g(~p/p) is the buoyancy acceleration and N 2 is the buoyancy frequency. 

(a) Derive the internal wave equation for the  pressure p, governing slow oscillations 
in a fluid when N 2 is constant. 

(b) Derive a geometric relation between the group and phase velocities of the waves. 

(c) Consider a vertically semi-infinite stratified fluid with constant N 2 above a 
sinusoidal boundary 

z = c s i n { k ( x - U t ) }  

with wavenumber k, height c << 1, and travelling in the positive x-direction at 
speed U. Discuss the form of the motion for N < kU and N > kU, obtaining 
the slope of the phase lines and the direction of energy propagation of any 
waves excited. 
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