UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C365: Geometry Of Numbers

COURSE CODE	: MATHC365
UNIT VALUE	: 0.50
DATE	: 09-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

05-C0935-3-30 © 2005 University College London

TURN OVER

۶.

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

If used, worksheets for questions 3, 4 should be tied into the answer book.

1. Define

- (a) a *lattice*, Λ , in \mathbb{E}^n ,
- (b) a *basis* of Λ ,
- (c) a unit lattice.

If Λ is a unit lattice in \mathbb{E}^2 , show that there are two points of Λ whose distance apart is not greater than $\sqrt{2/\sqrt{3}}$.

Use this result to show that the density of a lattice packing of congruent disks in \mathbb{E}^2 cannot be more than $\pi/\sqrt{12}$ and show this density can be attained.

2. State and prove Minkowski's theorem.

Let α be an irrational number. By considering the lattice $\Lambda = \{n, \alpha n - m; m, n \text{ integers}\}$ and the rectangle bounded by x = k, x = -k, $y = \frac{1}{k}$, $y = -\frac{1}{k}$, where k > 1, show that there are integers m, n such that $|\alpha - \frac{m}{n}| < \frac{1}{n^2}$.

MATHC365

PLEASE TURN OVER

3. (a) State Dowker's theorem.(b)

The figure shows a 5-gon $G_1
dots G_5$ and a 7-gon $H_1
dots H_7$ circumscribing the convex body C. Show how the 12 edges can be rearranged to form two 6-gons about C whose total area is less than the sum of the areas of $G_1
dots G_5$ and $H_1
dots H_7$, justifying your answers.

If $n \ge 4$, what is the corresponding result for any n-1-gon G and any n+1-gon H circumscribing C? Use this result to deduce Dowker's theorem for C.

(c) Let K be a convex body in \mathbb{E}^2 with a tangent at every boundary point and no straight line segment in its boundary.

If A_1, \ldots, A_k are the consecutive vertices of a k-gon of maximal area inscribed in K, show that, for $i = 1, \ldots, k$, the tangent to K at A_i is parallel to the chord $A_{i-1}A_{i+1}$, where A_{1-1} is A_k and A_{k+1} is A_1 . Hence, or otherwise, show that a k-gon of maximal area inscribed in a circle is regular.

MATHC365

CONTINUED

4. What is meant by describing a graph as (a) connected, (b) plane, (c) simple? State Euler's formula for a connected, plane graph with v vertices, e edges and f faces. If this graph is also simple, show that

$$e \leqslant 3v - 6. \tag{1}$$

In \mathbb{E}^2 , consider *n* convex bodies C_1, \ldots, C_n with disjoint interiors contained in a hexagon *H*. Within *H* there are polygons R_1, \ldots, R_n with disjoint interiors and $C_i \subseteq R_i, i = 1, \ldots, n$. For $i = 1, \ldots, n$, let the number of sides of R_i be s_i . Assume no R_i can be enlarged and that every point on the boundary of *H* belongs to either one or two R_i s with exactly *q* points belonging to two R_i s, none of these points being vertices of *H*.

The figure illustrates such a construction.

On this figure draw the graph with e edges constructed in Fejes Tóth's proof of his theorem and verify that, for this figure, $e > \frac{1}{2} \{ (\sum_{i=1}^{n} s_i) + q - 6 \}$.

Explain briefly why

$$e \ge \frac{1}{2} \left\{ \left(\sum_{i=1}^{n} s_i \right) + q - 6 \right\}$$
(2)

is true for every example of the described construction.

Deduce from (1) and (2) that $\sum_{i=1}^{n} s_i \leq 6n$.

MATHC365

PLEASE TURN OVER

5. What is an affinely regular hexagon?

If C is a convex body, what is meant by $\delta_L(C)$ and $\theta_L(C)$?

Show that a hexagon $p_1 \dots p_6$ in \mathbb{E}^2 is affinely regular if and only if it is centrally symmetric and $\overrightarrow{p_2p_1} + \overrightarrow{p_2p_3} = \overrightarrow{p_3p_4}$.

Either (a) show that any convex body C in \mathbb{E}^2 has an inscribed affinely regular hexagon, or (b) assume (a) and show that, for any convex body C in \mathbb{E}^2 ,

$$\theta_L(C) \leqslant \frac{3}{2}.$$

MATHC365

END OF PAPER

Worksheet for Question 3.

