University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics C365: Geometry Of Numbers

COURSE CODE : MATHC365

UNIT VALUE $: \mathbf{0 . 5 0}$

DATE : 09-MAY-05

TIME $\quad: 14.30$

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.
If used, worksheets for questions 3, 4 should be tied into the answer book.

1. Define
(a) a lattice, Λ, in \mathbb{E}^{n},
(b) a basis of Λ,
(c) a unit lattice.

If Λ is a unit lattice in \mathbb{E}^{2}, show that there are two points of Λ whose distance apart is not greater than $\sqrt{2 / \sqrt{3}}$.
Use this result to show that the density of a lattice packing of congruent disks in \mathbb{E}^{2} cannot be more than $\pi / \sqrt{12}$ and show this density can be attained.
2. State and prove Minkowski's theorem.

Let α be an irrational number. By considering the lattice $\Lambda=\{n, \alpha n-m ; m, n$ integers $\}$ and the rectangle bounded by $x=k, x=-k, y=\frac{1}{k}, y=-\frac{1}{k}$, where $k>1$, show that there are integers m, n such that $\left|\alpha-\frac{m}{n}\right|<\frac{1}{n^{2}}$.
3. (a) State Dowker's theorem.
(b)

The figure shows a 5 -gon $G_{1} \ldots G_{5}$ and a 7 -gon $H_{1} \ldots H_{7}$ circumscribing the convex body C. Show how the 12 edges can be rearranged to form two 6 -gons about C whose total area is less than the sum of the areas of $G_{1} \ldots G_{5}$ and $H_{1} \ldots H_{7}$, justifying your answers.
If $n \geqslant 4$, what is the corresponding result for any $n-1$-gon G and any $n+1$-gon H circumscribing C ? Use this result to deduce Dowker's theorem for C.
(c) Let K be a convex body in \mathbb{E}^{2} with a tangent at every boundary point and no straight line segment in its boundary.
If A_{1}, \ldots, A_{k} are the consecutive vertices of a k-gon of maximal area inscribed in K, show that, for $i=1, \ldots, k$, the tangent to K at A_{i} is parallel to the chord $A_{i-1} A_{i+1}$, where A_{1-1} is A_{k} and A_{k+1} is A_{1}. Hence, or otherwise, show that a k-gon of maximal area inscribed in a circle is regular.
4. What is meant by describing a graph as (a) connected, (b) plane, (c) simple?

State Euler's formula for a connected, plane graph with v vertices, e edges and f faces. If this graph is also simple, show that

$$
\begin{equation*}
e \leqslant 3 v-6 \tag{1}
\end{equation*}
$$

In \mathbb{E}^{2}, consider n convex bodies C_{1}, \ldots, C_{n} with disjoint interiors contained in a hexagon H. Within H there are polygons R_{1}, \ldots, R_{n} with disjoint interiors and $C_{i} \subseteq R_{i}, i=1, \ldots, n$. For $i=1, \ldots, n$, let the number of sides of R_{i} be s_{i}. Assume no R_{i} can be enlarged and that every point on the boundary of H belongs to either one or two $R_{i} \mathrm{~s}$ with exactly q points belonging to two $R_{i} \mathrm{~s}$, none of these points being vertices of H.

The figure illustrates such a construction.
On this figure draw the graph with e edges constructed in Fejes Tóth's proof of his theorem and verify that, for this figure, $e>\frac{1}{2}\left\{\left(\sum_{i=1}^{n} s_{i}\right)+q-6\right\}$.
Explain briefly why

$$
\begin{equation*}
e \geqslant \frac{1}{2}\left\{\left(\sum_{i=1}^{n} s_{i}\right)+q-6\right\} \tag{2}
\end{equation*}
$$

is true for every example of the described construction.
Deduce from (1) and (2) that $\sum_{i=1}^{n} s_{i} \leqslant 6 n$.
5. What is an affinely regular hexagon?

If C is a convex body, what is meant by $\delta_{L}(C)$ and $\theta_{L}(C)$?
Show that a hexagon $p_{1} \ldots p_{6}$ in \mathbb{E}^{2} is affinely regular if and only if it is centrally symmetric and ${\overrightarrow{p_{2}} p_{1}}+{\overrightarrow{p_{2}}}_{3}={\overrightarrow{p_{3}}}_{4}$.

Either (a) show that any convex body C in \mathbb{E}^{2} has an inscribed affinely regular hexagon, or (b) assume (a) and show that, for any convex body C in \mathbb{E}^{2},

$$
\theta_{L}(C) \leqslant \frac{3}{2}
$$

Worksheet for Question 3.

Candidate's number

