UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-
B.Sc.

Mathematics C365: Geometry Of Numbers

COURSE CODE : MATHC365

UNIT VALUE : 0.50

DATE : 23-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. If $f(m, n)=a m^{2}+2 b m n+c n^{2}$ is a positive definite quadratic form with $a>0$, $a c-b^{2}=1$, show that there are integers m^{\prime}, n^{\prime}, not both 0 , such that $f\left(m^{\prime}, n^{\prime}\right) \leqslant \frac{2}{\sqrt{3}}$. You may assume that any unit lattice in \mathbb{E}^{2} has two points whose distance apart is at most $\sqrt{\frac{2}{\sqrt{3}}}$.
Show, by giving an example, that this result is best possible.
Given $\varepsilon>0$, find an example of $f(m, n)$, as above, for which there are integers m, n, not both 0 , such that $f(m, n) \leqslant \varepsilon$.
2. State and prove Minkowski's Theorem.

Let p be a prime of the form $4 m+1$ where m is an integer. For such a prime, there is an integer $k, 0<k<p$, such that $k^{2} \equiv-1(\bmod p)$. Using this result, without proving it, and considering the lattice generated by $(1, k),(1, k+p)$, or otherwise, show that p can be expressed as the sum of the squares of two non-negative integers.
3. Let C be a convex body in the Euclidean plane and, for $n \geqslant 3$, let p_{n} be an n-gon of maximum area inscribed in C. Show that

$$
\operatorname{Area}\left(p_{n}\right) \geqslant \operatorname{Area}(C) \cdot \frac{n}{2 \pi} \sin \frac{2 \pi}{n} .
$$

If the function f is convex on $[a, b]$, state Jensen's inequality for f.
Show that no n-gon circumscribing the disk $x^{2}+y^{2}=r^{2}$ has a smaller area than the regular n-gon circumscribing this disk.
4. What is
(i) an affine transformation from \mathbb{E}^{2} to \mathbb{E}^{2},
(ii) an affinely regular hexagon?

If $\theta_{L}(C)$ is the density of the thinnest lattice covering of \mathbb{E}^{2} by the convex body C, show that $\theta_{L}(C) \leqslant \frac{3}{2}$.
Show further that, if $\theta_{L}(C)=\frac{3}{2}$, then C is a triangle.
You may assume without proof that C has an inscribed affinely regular hexagon.
5. Let $D(r) \geqslant 0$ be a density function which is continuous on $\left[0, r_{0}\right], r_{0} \geqslant 1$ and zero for $r>r_{0}$ and suppose that, for any packing $\left\{B^{d}+\mathbf{c}_{i}, i=1,2, \ldots\right\}$ of unit balls, where B^{d} is the ball of radius 1 centred at the origin, and for any $\mathbf{x} \in \mathbb{E}^{d}$,

$$
\sum_{i=1}^{\infty} D\left(\left|\mathbf{x}-\mathbf{c}_{i}\right|\right) \leqslant 1
$$

Show that the density, $\delta\left(B^{d}\right)$, of the densest packing of unit balls in \mathbb{E}^{d} satisfies

$$
\delta\left(B^{d}\right) \leqslant \frac{1}{d \int_{0}^{r_{0}} r^{d-1} D(r) d r}
$$

For any points $\mathbf{x}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{n}$ in \mathbb{E}^{d}, Blichfeldt's inequality is

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left|\mathbf{c}_{i}-\mathbf{c}_{j}\right|^{2} \leqslant 2 n \sum_{i=1}^{n}\left|\mathbf{x}-\mathbf{c}_{i}\right|^{2}
$$

Assuming this, show that

$$
\delta\left(B^{d}\right) \leqslant \frac{d+2}{2} 2^{-\frac{d}{2}} .
$$

