UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

B.Sc.

Mathematics C365: Geometry Of Numbers

COURSE CODE	: MATHC365
UNIT VALUE	: 0.50
DATE	: 23-MAY-03
TIME	: 14.30
	: 2 Hours

03-C0924-3-30 © 2003 University College London

TURN OVER

- ----5 All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. If $f(m,n) = am^2 + 2bmn + cn^2$ is a positive definite quadratic form with a > 0, $ac-b^2 = 1$, show that there are integers m', n', not both 0, such that $f(m', n') \leq \frac{2}{\sqrt{3}}$. You may assume that any unit lattice in \mathbb{E}^2 has two points whose distance apart is at most $\sqrt{\frac{2}{\sqrt{3}}}$.

Show, by giving an example, that this result is best possible.

Given $\varepsilon > 0$, find an example of f(m, n), as above, for which there are integers m, n, not both 0, such that $f(m, n) \leq \varepsilon$.

2. State and prove Minkowski's Theorem.

Let p be a prime of the form 4m + 1 where m is an integer. For such a prime, there is an integer k, 0 < k < p, such that $k^2 \equiv -1 \pmod{p}$. Using this result, without proving it, and considering the lattice generated by (1, k), (1, k + p), or otherwise, show that p can be expressed as the sum of the squares of two non-negative integers.

3. Let C be a convex body in the Euclidean plane and, for $n \ge 3$, let p_n be an n-gon of maximum area inscribed in C. Show that

$$\operatorname{Area}(p_n) \ge \operatorname{Area}(C) \cdot \frac{n}{2\pi} \sin \frac{2\pi}{n}.$$

If the function f is convex on [a, b], state Jensen's inequality for f.

Show that no *n*-gon circumscribing the disk $x^2 + y^2 = r^2$ has a smaller area than the regular *n*-gon circumscribing this disk.

MATHC365

PLEASE TURN OVER

4. What is

- (i) an affine transformation from \mathbb{E}^2 to \mathbb{E}^2 ,
- (ii) an affinely regular hexagon?

If $\theta_L(C)$ is the density of the thinnest lattice covering of \mathbb{E}^2 by the convex body C, show that $\theta_L(C) \leq \frac{3}{2}$.

Show further that, if $\theta_L(C) = \frac{3}{2}$, then C is a triangle.

You may assume without proof that C has an inscribed affinely regular hexagon.

5. Let $D(r) \ge 0$ be a density function which is continuous on $[0, r_0]$, $r_0 \ge 1$ and zero for $r > r_0$ and suppose that, for any packing $\{B^d + \mathbf{c}_i, i = 1, 2, ...\}$ of unit balls, where B^d is the ball of radius 1 centred at the origin, and for any $\mathbf{x} \in \mathbb{E}^d$,

$$\sum_{i=1}^{\infty} D(|\mathbf{x} - \mathbf{c}_i|) \leq 1.$$

Show that the density, $\delta(B^d)$, of the densest packing of unit balls in \mathbb{E}^d satisfies

$$\delta(B^d) \leqslant \frac{1}{d \int_0^{r_0} r^{d-1} D(r) dr}.$$

For any points $\mathbf{x}, \mathbf{c}_1, \ldots, \mathbf{c}_n$ in \mathbb{E}^d , Blichfeldt's inequality is

$$\sum_{i=1}^{n}\sum_{j=1}^{n}|\mathbf{c}_{i}-\mathbf{c}_{j}|^{2} \leq 2n\sum_{i=1}^{n}|\mathbf{x}-\mathbf{c}_{i}|^{2}.$$

Assuming this, show that

$$\delta(B^d) \leqslant \frac{d+2}{2} 2^{-\frac{d}{2}}.$$

MATHC365

END OF PAPER