UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :B.SC. M.Sci.

Mathematics C365: Geometry Of Numbers

COURSE CODE : MATHC365

UNIT VALUE : 0.50

DATE : 08-MAY-02

TIME : $\mathbf{1 4 . 3 0}$

TIME ALLOWED : 2 hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State and prove Minkowski's Lattice Point Theorem.
(b) For a real number α, consider the lattice in \mathbb{R}^{2} :

$$
L=\left\{\binom{n}{\alpha n-m}: n, m \in \mathbb{Z}\right\} .
$$

Write down a basis of L and hence show that L is a unit lattice.
For $N>1$ consider the following rectangle:

$$
R_{N}=\left\{\binom{x}{y} \in \mathbb{R}^{2}:|x| \leq N \text { and }|y| \leq \frac{1}{N}\right\} .
$$

By calculating the area of R_{N}, show that R_{N} contains a non-zero point of L.
Hence or otherwise show that there is a rational number $\frac{m}{n}$ with denominator $n \leq N$, such that

$$
\left|\alpha-\frac{m}{n}\right| \leq \frac{1}{n \bar{N}} .
$$

2. (a) Explain what it means for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to be convex.

Let f be a convex function. Show that

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right) \geq f\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right) .
$$

(b) Let B denote the unit ball in \mathbb{R}^{2}. Let P be an n-gon with vertices on the boundary of B and internal angles $\theta_{1}, \ldots, \theta_{n}$.
(i) Show that area $(P)=\frac{1}{2} \sum_{i=1}^{n} \sin (\theta)$.
(ii) Hence deduce that area $(P) \leq \frac{n}{2} \sin \left(\frac{2 \pi}{n}\right)$, with equality if P is a regular n-gon.
3. (a) Let C be a non-emptv, closed, bounded, convex subset of \mathbb{R}^{2} such that $C=\overline{C^{o}}$. Shr" that . re is an affinely regular hexagon H whose vertices are on the boun 'y of $($
(b) Hence or otl wise show that there is a lattice covering of \mathbb{R}^{2} by copies of \bar{C} with thickness $\leq \frac{3}{2}$.
4. (a) Define the Möbius function μ.

Prove that

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

(b) Let $C \subset \mathbb{R}^{d}$ be a symmetric star body and let g denote the characteristic function of C. Define

$$
f(v)=\sum_{n \in \mathbb{N}} \mu(n) g(n v), \quad v \in \mathbb{R}^{d} \backslash\{0\}
$$

(i) Prove that for any lattice L in \mathbb{R}^{d}, the sum

$$
\sum_{l \in L \backslash\{0\}} f(l)
$$

is equal to the number of primitive points of L in C.
(ii) Show that

$$
\zeta(d) \int_{\mathbb{R}^{d}} f(v) d v=\operatorname{vol}(C)
$$

where ζ denotes the Riemann zeta function.
(iii) Hence deduce that

$$
\Delta(C) \leq \frac{\operatorname{vol}(C)}{2 \zeta(d)}
$$

where Δ denotes the lattice constant of C. You may assume that for any $\epsilon>0$, there is a unit lattice L in \mathbb{R}^{d}, such that

$$
\sum_{l \in L \backslash\{0\}} f(l) \leq \int_{\mathbb{R}^{d}} f(v) d v+\epsilon
$$

5. (a) Let $\left\{c_{i}+B^{d}: i \in \mathbb{N}\right\}$ be a packing of unit balls in \mathbb{R}^{d}. Let D be the Dirichlet cell of the ball $c_{1}+B^{d}$ and suppose $c_{1}=0$. Consider a flag \mathcal{F} of faces of D :

$$
\mathcal{F}: F_{0} \subset F_{1} \subset \ldots \subset F_{d-1} \subset D
$$

where F_{i} is an i-dimensional face. Let w_{i} be the nearest point of F_{i} to 0 .
Either answer part (i) or answer part (ii) but not both.
(i) Show using Blichfeldt's inequality that:

$$
\left\langle w_{d-i}, w_{d-i}\right\rangle \geq \frac{2 i}{i+1}
$$

(ii) By assuming the inequality of (i), prove that for $i<j$,

$$
\left\langle w_{d-i}, w_{d-j}\right\rangle \geq \frac{2 i}{i+1}
$$

(b) Let $D_{\mathcal{F}}$ denote the simplex with vertices $0, w_{0}, \ldots, w_{d-1}$.

Let S_{0} be a d-dimensional simplex with vertices $0, v_{1}, v_{2}, \ldots, v_{d}$, such that that for $i \leq j$,

$$
\left\langle v_{i}, v_{j}\right\rangle=\frac{2 i}{i+1}
$$

Consider the linear map $T: D_{\mathcal{F}} \rightarrow S_{0}$ defined by

$$
T\left(\sum_{i=1}^{d} x_{i} w_{d-i}\right)=\sum_{i=1}^{d} x_{i} v_{i}
$$

Prove that for $v \in B^{d} \cap D_{\mathcal{F}}$, we have $\|T(v)\| \leq 1$.
Briefly explain.why

$$
\delta \leq \frac{\operatorname{vol}\left(S_{0} \cap B^{d}\right)}{\operatorname{vol}\left(S_{0}\right)}
$$

where δ denotes the density of the packing.

