UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

۲. ۲.

Mathematics C340: Geometry And Topology

1

COURSE CODE : MATHC340

UNIT VALUE : 0.50

DATE : 04-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

05-C0928-3-40 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. Define the following notions :
 - (i) chain complex ;
 - (ii) the homology groups of a chain complex ;
 - (iii) an exact sequence of vector spaces and linear maps.

Explain, giving necessary definitions, but without proof, how a short exact sequence of chain complexes gives rise to a long exact sequence of homology groups.

State the Five Lemma.

Let

be a commutative diagram of chain complexes and chain maps in which both rows are exact, and β and γ induce isomorphisms in homology. Show that the induced map $\alpha_* : H_*(A) \to H_*(A)$ is also an isomorphism.

- 2. Explain what is meant by a simplicial complex . If K is a simplicial complex, explain further what is meant by
 - i) the cone CK;
 - ii) the homology groups $H_*(K; \mathbb{F})$ where \mathbb{F} is a field.

For any finite simplicial complex K, show that the cone CK is connected, and compute the homology groups $H_r(CK; \mathbb{F})$ for $r \ge 0$.

Let X_1, X_2 be subcomplexes of a finite simplicial complex X such that $X = X_1 \cup X_2$. Suppose that over a field \mathbb{F} the homology of $X_1 \cap X_2$ is determined thus

$$H_r(X_1 \cap X_2) \cong \left\{ egin{array}{cc} \mathbb{F} & r=0 \ \mathbb{F}^3 & r=2 \ 0 & ext{otherwise} \end{array}
ight.$$

and that both X_1 and X_2 are combinatorially equivalent to cones. Compute the homology groups $H_r(X)$ for all $r \ge 0$.

[You may use without proof the Mayer Vietoris Theorem relating the homology groups $H_*(X)$, $H_*(X_1)$, $H_*(X_2)$ and $H_*(X_1 \cap X_2)$.]

MATHC340

PLEASE TURN OVER

- 3. Define the following notions :
 - (i) the link Lk(v, K) of a vertex v in a simplicial complex K;
 - (ii) a simplicial surface ;
 - (iii) the connected sum $\Sigma_1 \# \Sigma_2$ of simplicial surfaces Σ_1, Σ_2 .

If Σ_1 , Σ_2 are finite connected simplicial surfaces, state and prove a relationship which holds between the Euler characteristics $\chi(\Sigma_1)$, $\chi(\Sigma_2)$ and $\chi(\Sigma_1 \# \Sigma_2)$.

Let Σ be a finite connected simplicial surface which contains no Möbius band. If $H_1(\Sigma; \mathbf{F}_2) \neq 0$, where \mathbf{F}_2 is the field with two elements, indicate the main steps involved in showing that Σ is a connected sum

$$\Sigma \sim \Sigma_1 \# T^2$$
,

and deduce that $\dim_{\mathbf{F}_2} H_1(\Sigma_1; \mathbf{F}_2) = \dim_{\mathbf{F}_2} H_1(\Sigma; \mathbf{F}_2) - 2$.

4. By identifying the sides of a rectangle appropriately, explain how to obtain :

i) the torus T^2 ; ii) the Klein bottle K^2 ; iii) the Möbius band \mathcal{M} öb.

By means of a suitable triangulation, describe the real projective plane \mathbb{RP}^2 , and state without proof the relation which holds between \mathbb{RP}^2 and $\mathcal{M}\ddot{\mathrm{ob}}$.

Hence show that if Σ is a finite connected surface which contains a Möbius band then

$$\Sigma \sim \mathbb{RP}^2 \# \Sigma_1$$

for some surface Σ_1 .

Give a diagrammatic proof that $\mathcal{M}\ddot{\mathrm{o}}b \ \# \ T^2 \sim \mathcal{M}\ddot{\mathrm{o}}b \ \# \ K^2$.

Hence deduce that $\mathbb{RP}^2 \# T^2 \sim \mathbb{RP}^2 \# \mathbb{RP}^2 \# \mathbb{RP}^2$.

MATHC340

CONTINUED

ا.

Ę

5. Define the *trace*, Tr(A), of an $n \times n$ matrix A. Explain briefly how to define the trace of a linear map $S: V \to V$, where V is a finite dimensional vector space.

Let K be a finite simplicial complex, and let $f : K \to K$ be a simplicial map. Explain what is meant by the *homological Lefschetz number* $\lambda_{\text{hom}}(f)$, and state an alternative way in which this number may be calculated.

State and prove the Lefschetz Fixed Simplex Theorem.

Suppose that K is a finite simplicial complex whose rational homology is given by

$$H_r(K,\mathbb{Q}) = \left\{egin{array}{cc} \mathbb{Q} & r=0,10 \ \mathbb{Q}^3 & r=5 \ 0 & ext{otherwise} \end{array}
ight.$$

and that $T: K \to K$ is a simplicial map satisfying $T^2 = \text{Id.}$ Suppose also that the induced map $H_5(T): H_5(K; \mathbb{Q}) \to H_5(K; \mathbb{Q})$ may be described by the matrix

$$H_5(T) = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

List the possible values of $\lambda_{\text{hom}}(T)$. Hence deduce that there exists a simplex σ of K such that $T(\sigma) = \sigma$.

MATHC340

END OF PAPER