EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

> B.SC. M.Sci.

Mathematics C340: Geometry And Topology

COURSE CODE : MATHC340

UNIT VALUE : 0.50

DATE : 04-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Define the following notions :
(i) chain complex ;
(ii) the homology groups of a chain complex ;
(iii) an exact sequence of vector spaces and linear maps.

Explain, giving necessary definitions, but without proof, how a short exact sequence of chain complexes gives rise to a long exact sequence of homology groups.

State the Five Lemma.
Let

$$
\begin{array}{ccccc}
0 \rightarrow & A_{*} \xrightarrow{i} & B_{*} \xrightarrow{p} & C_{*} \rightarrow & 0 \\
& \downarrow \alpha & \downarrow \beta & \downarrow \gamma & \\
0 \rightarrow & A_{*} \xrightarrow{i} & B_{*} \xrightarrow{p} & C_{*} \rightarrow & 0
\end{array}
$$

be a commutative diagram of chain complexes and chain maps in which both rows are exact, and β and γ induce isomorphisms in homology. Show that the induced $\operatorname{map} \alpha_{*}: H_{*}(A) \rightarrow H_{*}(A)$ is also an isomorphism.
2. Explain what is meant by a simplicial complex. If K is a simplicial complex, explain further what is meant by
i) the cone $C K$;
ii) the homology groups $H_{*}(K ; \mathbb{F})$ where \mathbb{F} is a field.

For any finite simplicial complex K, show that the cone $C K$ is connected, and compute the homology groups $H_{r}(C K ; \mathbb{F})$ for $r \geqslant 0$.
Let X_{1}, X_{2} be subcomplexes of a finite simplicial complex X such that $X=X_{1} \cup X_{2}$. Suppose that over a field \mathbb{F} the homology of $X_{1} \cap X_{2}$ is determined thus

$$
H_{r}\left(X_{1} \cap X_{2}\right) \cong\left\{\begin{array}{cc}
\mathbb{F} & r=0 \\
\mathbb{F}^{3} & r=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

and that both X_{1} and X_{2} are combinatorially equivalent to cones. Compute the homology groups $H_{r}(X)$ for all $r \geqslant 0$.
[You may use without proof the Mayer Vietoris Theorem relating the homology groups $H_{*}(X), H_{*}\left(X_{1}\right), H_{*}\left(X_{2}\right)$ and $H_{*}\left(X_{1} \cap X_{2}\right)$.]
3. Define the following notions :
(i) the link $\mathrm{Lk}(v, K)$ of a vertex v in a simplicial complex K;
(ii) a simplicial surface ;
(iii) the connected sum $\Sigma_{1} \# \Sigma_{2}$ of simplicial surfaces Σ_{1}, Σ_{2}

If Σ_{1}, Σ_{2} are finite connected simplicial surfaces, state and prove a relationship which holds between the Euler characteristics $\chi\left(\Sigma_{1}\right), \chi\left(\Sigma_{2}\right)$ and $\chi\left(\Sigma_{1} \# \Sigma_{2}\right)$.
Let Σ be a finite connected simplicial surface which contains no Möbius band. If $H_{1}\left(\Sigma ; \mathbf{F}_{2}\right) \neq 0$, where \mathbf{F}_{2} is the field with two elements, indicate the main steps involved in showing that Σ is a connected sum

$$
\Sigma \sim \Sigma_{1} \# T^{2}
$$

and deduce that $\operatorname{dim}_{\mathbf{F}_{2}} H_{1}\left(\Sigma_{1} ; \mathbf{F}_{2}\right)=\operatorname{dim}_{\mathbf{F}_{2}} H_{1}\left(\Sigma ; \mathbf{F}_{2}\right)-2$.
4. By identifying the sides of a rectangle appropriately, explain how to obtain :
i) the torus T^{2}; ii) the Klein bottle K^{2}; iii) the Möbius band \mathcal{M} öb.

By means of a suitable triangulation, describe the real projective plane $\mathbb{R P}^{2}$, and state without proof the relation which holds between $\mathbb{R} \mathbb{P}^{2}$ and \mathcal{M} öb.
Hence show that if Σ is a finite connected surface which contains a Möbius band then

$$
\Sigma \sim \mathbb{R P}^{2} \# \Sigma_{1}
$$

for some surface Σ_{1}.
Give a diagrammatic proof that \mathcal{M} öb $\# T^{2} \sim \mathcal{M}$ öb $\# K^{2}$.
Hence deduce that $\mathbb{R} \mathbb{P}^{2} \# T^{2} \sim \mathbb{R P}^{2} \# \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}$.
5. Define the trace, $\operatorname{Tr}(A)$, of an $n \times n$ matrix A. Explain briefly how to define the trace of a linear map $S: V \rightarrow V$, where V is a finite dimensional vector space.
Let K be a finite simplicial complex, and let $f: K \rightarrow K$ be a simplicial map. Explain what is meant by the homological Lefschetz number $\lambda_{\text {hom }}(f)$, and state an alternative way in which this number may be calculated.
State and prove the Lefschetz Fixed Simplex Theorem.
Suppose that K is a finite simplicial complex whose rational homology is given by

$$
H_{r}(K, \mathbb{Q})=\left\{\begin{array}{cc}
\mathbb{Q} & r=0,10 \\
\mathbb{Q}^{3} & r=5 \\
0 & \text { otherwise }
\end{array}\right.
$$

and that $T: K \rightarrow K$ is a simplicial map satisfying $T^{2}=$ Id. Suppose also that the induced map $H_{5}(T): H_{5}(K ; \mathbb{Q}) \rightarrow H_{5}(K ; \mathbb{Q})$ may be described by the matrix

$$
H_{5}(T)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

List the possible values of $\lambda_{\text {hom }}(T)$. Hence deduce that there exists a simplex σ of K such that $T(\sigma)=\sigma$.

