UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C340: Geometry And Topology

COURSE CODE	: MATHC340
UNIT VALUE	: 0.50
DATE	: 09-MAY-03
TIME	: 14.30
TIME ALLOWED	: 2 Hours

.

03-C0917-3-30 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Define the following notions :

(i) chain complex ; (ii) homology of a chain complex.

If X is a finite simplicial complex, explain the construction of the homology groups $H_*(X; \mathbf{F})$.

Outline the key steps involved in the computation of

(iii) $H_*(\Delta; \mathbf{F})$ when Δ is the cone on some finite simplicial complex.

State the Mayer-Vietoris Theorem in its geometric form, and, in this connection, show how the computation of (iii) above allows, when $n \ge 1$, for the computation of $H_*(S^n; \mathbf{F})$ where S^n is the standard simplicial model of the *n*-sphere.

2. State the Five Lemma.

Explain, giving necessary definitions, but without proof, how a short exact sequence of chain complexes gives rise to a long exact sequence of homology groups. Let

56

be a commutative diagram of chain complexes and chain maps in which both rows are exact, and α and γ induce isomorphisms in homology. Show that the induced map $\beta_*: H_*(B) \to H_*(B)$ is also an isomorphism.

Let X_1, X_2 be subcomplexes of a finite simplicial complex X such that $X = X_1 \cup X_2$, and let $\phi : X \to X$ be a simplicial map such that $\phi(X_i) \subset X_i$ for i = 1, 2. Suppose that

(i) $\phi: X_1 \to X_1$ is a simplicial isomorphism, and that

(ii) X_2 is isomorphic to a cone.

Prove that $\phi_* : H_*(X; \mathbf{F}) \to H_*(X; \mathbf{F})$ is an isomorphism.

MATHC340

PLEASE TURN OVER

3. By identifying the sides of a rectangle appropriately, explain how to obtain :

i) the torus T^2 ; ii) the Klein bottle K^2 ; iii) the Möbius band.

Explain what is meant by the *connected sum* M # N of two surfaces M and N. Let Σ be a surface containing a Mobius band ; give a diagrammatic proof that

$$\Sigma \# T^2 \sim \Sigma \# K^2$$

Let X be a finite connected surface containing no Möbius band. If $H_1(\Sigma; \mathbf{F}_2) \neq 0$, where \mathbf{F}_2 is the field with two elements, indicate the main steps involved in showing that X is a connected sum

$$X \sim X_1 \# T^2$$

Deduce that $\dim_{\mathbf{F}_2} H_1(X_1; \mathbf{F}_2) = \dim_{\mathbf{F}_2} H_1(X; \mathbf{F}_2) - 2.$

- 4. Let X, Y be finite cell complexes. State the Künneth Theorem for $H_*(X \times Y; \mathbf{F})$. Hence, or otherwise, calculate
 - (i) $H_*(S^2 \times \mathbf{RP}^2; \mathbf{F}_2)$ where \mathbf{F}_2 is the field with two elements ;
 - (ii) $H_*(S^2 \times \mathbf{RP}^2; \mathbf{Q})$;
 - (iii) $H_*(S^2 \times S^4 \times S^4; \mathbf{F}).$

If K is a finite cell complex, find a relation between

(iv) $H_n(K; \mathbf{F})$, $H_{n-2}(K; \mathbf{F})$ and $H_n(K \times S^2; \mathbf{F})$,

and also a relation between

- (v) $\chi(K \times S^2)$ and $\chi(K)$.
- 5. Define the *trace*, Tr(A), of an $n \times n$ matrix A. Explain briefly how to define the trace of a linear map $S: V \to V$, where V is a finite dimensional vector space.

Let K be a finite simplicial complex, and let $f : K \to K$ be a simplicial map. Explain what is meant by the *homological Lefschetz number* $\lambda_{\text{hom}}(f)$, and prove that if $\lambda_{\text{hom}}(f) \neq 0$ then f fixes a simplex of K.

When K is combinatorially equivalent to $S^3 \times S^3$, show that f fixes a simplex provided also that

- i) the induced map $f_*: H_6(K; \mathbf{Q}) \to H_6(K; \mathbf{Q})$ is the identity; and
- ii) the induced map $f_*: H_3(K; \mathbf{Q}) \to H_3(K; \mathbf{Q})$ is represented by the matrix

(-1	2		
	0	-1)	•

MATHC340

END OF PAPER