UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C343: Gas Dynamics

COURSE CODE : MATHC343

UNIT VALUE : 0.50

DATE : 04-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

For an ideal gas the equation of state is $p=\rho R T$, and the square of the speed of sound is $a^{2}=\gamma R T$, where $R=c_{p}-c_{v}$ and $\gamma=c_{p} / c_{v}$. The specific heats for an ideal gas can be regarded as constant.

For isentropic flow of an ideal gas, $p=k \rho^{\gamma}$ for some constant k.

1. Write down the relation between $\mathrm{d} e, \mathrm{~d} s$ and $\mathrm{d} v$ required by the laws of thermodynamics, where e is specific internal energy, s is specific entropy, and v is specific volume.
(a) Enthalpy is defined as $h=e+p v$, and the Gibbs function is defined as $g=h+T s$. By considering $g(p, T)$, or otherwise, prove that

$$
\left(\frac{\partial s}{\partial p}\right)_{T}=-\left(\frac{\partial v}{\partial T}\right)_{p}
$$

Given that the definition of specific heat at constant pressure is

$$
c_{p}=T\left(\frac{\partial s}{\partial T}\right)_{p}
$$

prove that

$$
c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

(b) For an ideal gas, prove that h is a function of T alone by considering $h(p, T)$. Thus, given $h=0$ when $T=0$, prove that enthalpy and the speed of sound are related by $a=(\gamma-1)^{1 / 2} h^{1 / 2}$.
2. The equations for one-dimensional motion of a gas are $\rho_{t}+(\rho u)_{x}=0$, and $\rho\left(u_{t}+u u_{x}\right)=-p_{x}$. For isentropic flow of an ideal gas, show that the momentum equation can be written in the form

$$
u_{t}+u u_{x}=-\alpha a a_{x}
$$

where $\alpha=2 /(\gamma-1)$.
The continuity equation can similarly be expressed as $\alpha a_{t}+a u_{x}+\alpha u a_{x}=0$, which leads to the two characteristic equations

$$
(u \pm \alpha a)_{t}+(u \pm a)(u \pm \alpha a)_{x}=0
$$

A long cylinder contains air at rest in the region $x>0$, and has a piston at $x=0$. From time $t=0$ the piston is withdrawn abruptly from the cylinder with constant velocity $U=-a_{0} / 6$, where a_{0} is the speed of sound in the gas at rest. (You may assume that air is an ideal gas, and that $\gamma=1.4$.)
(a) Prove that the c^{+}characteristics that start from the position of the piston at $t>0$ are parallel straight lines, and that the expansion fan region is bounded by the lines $x=a_{o} t$ and $x=\left(4 a_{o} / 5\right) t$.
(b) Sketch the path of the piston and typical c^{-}and c^{+}characteristics in the $x-t$ plane for $t \geq 0$.
(c) Given that the c^{+}characteristics are straight lines in the expansion fan region, prove that at location $x=L$ the velocity is

$$
u=-\left(5 a_{0} / 6\right)\left(1-L / a_{0} t\right)
$$

for $L / a_{0} \leq t \leq 5 L / 4 a_{0}$.
3. An ideal gas flows steadily from a reservoir out through a nozzle with varying crosssectional area $A(x)$. In the reservoir $\rho=\rho_{0}, p=p_{0}$, and effectively $u=0$.
(a) Using $\left(c_{p} T+u^{2} / 2\right)_{x}=0$, prove that

$$
a^{2} / a_{0}^{2}=2 /\left[2+(\gamma-1) M^{2}\right]
$$

where $M=u / a$ is the Mach number.
Hence show that
(i) $a^{* 2} / a_{0}^{2}=2 /(\gamma+1), \quad$ and
(ii) $u^{2} / a^{* 2}=(\gamma+1) M^{2} /\left[2+(\gamma-1) M^{2}\right]$,
where ${ }^{*}$ denotes sonic conditions.
(b) For isentropic flow show that

$$
\rho / \rho^{*}=\left[(\gamma+1) /\left(2+(\gamma-1) M^{2}\right)\right]^{1 /(\gamma-1)}
$$

Hence obtain an expression for $(\rho u) /\left(\rho^{*} a^{*}\right)$ as a function of M. Show that this function has a maximum value of 1 when $M=1$. (You may assume \bar{u} is positive.)
(c) Use this result to deduce that the mass flux $Q=\rho u A$ in the nozzle is at most $\rho^{*} a^{*} A_{\text {min }}$, where $A_{\text {min }}$ is the minimum cross-sectional area in the nozzle.
4. In a steady two-dimensional flow of an ideal gas, supersonic flow with speed w_{1} crosses a shock. In standard notation, the wave angle is β, and the angle of deflection is θ. After crossing the shock, the speed is w_{2}. The flow components normal and tangential to the shock are denoted u and v respectively; u_{1} is supersonic and u_{2} is subsonic.
(a) Sketch the geometry of the flow crossing the shock, indicating the angles β and θ, and the flow components $u_{1}, v_{1}, w_{1}, u_{2}, v_{2}$ and w_{2}.
If the upstream Mach number is $\left(w_{1} / a_{1}\right)=M_{1}=2$, what is the minimum value of β ?
(b) From the momentum equations the jump conditions are $\rho_{1} u_{1}{ }^{2}+p_{1}=\rho_{2} u_{2}{ }^{2}+p_{2}$ and $\rho_{1} u_{1} v_{1}=\rho_{2} u_{2} v_{2}$. State the jump condition that can be derived from the equation of continuity, and hence deduce that $v_{1}=v_{2}$ and that

$$
u_{1}+R T_{1} / u_{1}=u_{2}+R T_{2} / u_{2}
$$

(c) The energy equation gives the jump condition $h_{1}+w_{1}{ }^{2} / 2=h_{2}+w_{2}{ }^{2} / 2$. Use this condition to show that

$$
2 a_{1}^{2}+(\gamma-1) w_{1}^{2}=2 a_{2}^{2}+(\gamma-1) w_{2}^{2}=(\gamma+1) a^{* 2}
$$

where a^{*} is the speed of sonic flow.
(d) Using the above conditions and results, derive Prandtl's relation for an oblique shock:

$$
u_{1} u_{2}=a^{* 2}-v_{1}^{2}(\gamma-1) /(\gamma+1)
$$

5. For steady irrotational isentropic flow of an ideal gas the governing equations can be written $\nabla \cdot(\rho \underline{u})=0$ and $\nabla\left(\frac{1}{2} \underline{u}^{2}+\frac{\gamma}{\gamma-1}(p / \rho)\right)=0$.
(a) A two-dimensional flow has $p=p_{0}, \rho=\rho_{0}$ and $\underline{u}=\left(u_{0}, 0\right)$ when undisturbed, where u_{0} is a positive constant. For small perturbations it can be shown that $\tilde{p} / p_{0}=\gamma \tilde{\rho} / \rho_{0}$, where \tilde{p} etc. denote perturbations to a flow that is undisturbed far upstream. Derive the linearised relations
(i) $\rho_{0}\left(\tilde{u}_{x}+\tilde{v}_{y}\right)+u_{0} \tilde{\rho}_{x}=0$, and
(ii) $u_{0} \tilde{u}+a_{0}^{2} \tilde{\rho} / \rho_{0}=0$.
(b) The velocity perturbation can be expressed as $\underline{\tilde{u}}=\nabla \phi$. For supersonic flow, show that

$$
\lambda^{2} \phi_{x x}-\phi_{y y}=0
$$

where $\lambda^{2}=\left(u_{0}{ }^{2} / a_{0}{ }^{2}\right)-1$.
(c) A thin aerofoil with top surface $y=T(x)$ and bottom surface $y=B(x)$, for $0 \leq x \leq L$, is placed in this uniform supersonic flow. (Here $T(0)=B(0)=0$.) In which region of the (x, y) plane is the pressure unperturbed? Provide a sketch to illustrate your answer.

The linearised boundary conditions for \tilde{v} are $\tilde{v}=u_{0} d T / d x$ on $y=0^{+}$, and $\tilde{v}=u_{0} d B / d x$ on $y=0^{-}$. Show that

$$
\lambda \tilde{p} /\left(\rho_{0} u_{0}^{2}\right)=d T / d x
$$

on the top surface, and find an equivalent expression for \tilde{p} on the lower surface. Deduce that the lift on the aerofoil is zero if $T(L)=B(L)=0$.

