University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C343: Gas Dynamics

COURSE CODE : MATHC343

UNIT VALUE : 0.50

DATE : 16-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (i) State the first and second laws of thermodynamics. Distinguish between reversible and irreversible processes, and define carefully the quantities you introduce.
(ii) Stefan's law relates the internal energy E of a system to its volume V and temperature T by

$$
E=\sigma V T^{4}
$$

where σ is a constant. Show that, if the zero of the entropy S and that of the absolute temperature T are taken to coincide, then

$$
S=4 E /(3 T)
$$

and the pressure p is given by

$$
p=E /(3 V)
$$

2. Gas is moving in the x-direction across a normal shock and the pressure, density and speed of the gas change from the constant values p_{1}, ρ_{1} and u_{1} when x is large and negative, to the constant values p_{2}, ρ_{2} and u_{2} when x is large and positive. The one-dimensional equations of continuity, momentum and energy are

$$
\begin{gathered}
\frac{d}{d x}(\rho u)=0 \\
\rho u \frac{d u}{d x}=\frac{d}{d x}\left(-p+(\lambda+2 \mu) \frac{d u}{d x}\right) \\
\rho u \frac{d}{d x}\left(\frac{\mathcal{R} T}{\gamma-1}+\frac{p}{\rho}+\frac{1}{2} u^{2}\right)=\frac{d}{d x}\left((\lambda+2 \mu) u \frac{d u}{d x}+k \frac{d T}{d x}\right)
\end{gathered}
$$

where k, λ, μ are coefficients of conduction and viscosity and T is the temperature, determined by the perfect gas law $T=p / \mathcal{R} \rho$.
Write down first integrals of these equations and deduce (but do not solve) equations which relate p_{2}, ρ_{2} and u_{2} to p_{1}, ρ_{1} and u_{1}.
If $k=\gamma \mathcal{R}(\lambda+2 \mu) /(\gamma-1)$, show that

$$
\frac{\gamma p}{(\gamma-1) \rho}+\frac{1}{2} u^{2}=D
$$

and that

$$
\frac{\lambda+2 \mu}{\rho_{1} u_{1}} \frac{d u}{d x}=\frac{\gamma+1}{2 \gamma} u-C+\frac{(\gamma-1) D}{\gamma u}
$$

where the constants C and D may be written in terms of p_{1}, ρ_{1}, u_{1}.
3. A tube of variable cross-section $A(x)$ has $A(x) \rightarrow \infty$ as $x \rightarrow-\infty$ where a steady adiabatic isentropic flow of a perfect gas satisfies reservoir conditions

$$
u(x) \rightarrow 0, \quad \rho(x) \rightarrow \rho_{0}, \quad p(x) \rightarrow p_{0}, \quad a(x) \rightarrow a_{0}
$$

Starting with Bernoulli's equation in the form

$$
\frac{1}{2} u^{2}+\frac{\epsilon^{2}}{\gamma-1}=\text { constant }
$$

show that

$$
u(x)=\bar{a}\left(1-y^{n}\right)^{\frac{1}{2}}
$$

where

$$
\bar{a}=\left(\frac{2}{\gamma-1}\right)^{\frac{1}{2}} a_{0}, \quad n=\frac{\gamma-1}{\gamma} \quad \text { and } \quad y=p(x) / p_{0}
$$

Write down the equation of continuity appropriate to this flow and show that the mass flux Q, defined by $Q=\rho u A$, is a constant. Calculate

$$
f(y)=\frac{Q}{\rho_{0} \bar{a} A(x)} \text { and } M^{2}=\frac{u^{2}}{a^{2}}
$$

as functions of y. Show that $f(y)$ has a maximum value of

$$
\left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}}\left(\frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{2}} \text { at } y=\left(\frac{2}{\gamma+1}\right)^{\frac{1}{n}}
$$

Illustrate these results by a sketch, showing that $M^{2}=1$ at this maximum.
A wind tunnel with a supersonic working section has a single throat of area A_{t}. The flow is smooth and shock free. Find Q in terms of A_{t}. If $\gamma=5 / 3$ and the Mach number M has the value 2 at the exit where $x=x_{e}$, show that

$$
\frac{A\left(x_{e}\right)}{A_{t}}=\frac{49}{32}
$$

4. Express the equations

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-\frac{1}{\rho} \frac{\partial p}{\partial x}, \quad \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)=0 \\
p=k p^{\gamma}, \quad a^{2}=\gamma p / \rho
\end{gathered}
$$

governing the one-dimensional motion of a perfect gas moving isentropically in a uniform tube in characteristic form

$$
\left(\frac{\partial}{\partial t}+(u \pm a) \frac{\partial}{\partial x}\right)\left(u \pm \frac{2 a}{\gamma-1}\right)=0
$$

Here $u(x, t)$ is the velocity of the gas, $a(x, t)$ is the speed of sound, x measures distance along the tube, t is the time and γ is the ratio of the specific heats.
Gas is at rest in the region $x>0$, so that $u(x, 0)=0$ and $a(x, 0)=a_{0}$. At $t=0$, a piston, initially at $x=0$, starts to withdraw with increasing speed in the x decreasing direction. Show that
(i) the density at the piston will fall to zero when its withdrawal speed is $2 a_{0} /(\gamma-1)$;
(ii) if $x_{1}(<0)$ is the position of the piston at the time t_{1} at which its withdrawal speed is $2 a_{0} /(\gamma+1)$, then $a\left(x_{1}, t\right)$ is constant for $t>t_{1}$.
5. Assuming Bernoulli's equation and the equation of continuity for an isentropic flow of a perfect gas in the form

$$
\begin{gathered}
\frac{1}{2}\left(u^{2}+v^{2}\right)+\frac{a^{2}}{\gamma-1}=\frac{a_{\infty}^{2}}{\gamma-1}+\frac{1}{2} U_{\infty}^{2} \\
\frac{\partial}{\partial x}\left(a^{\frac{2}{\gamma-1}} u\right)+\frac{\partial}{\partial y}\left(a^{\frac{2}{\gamma-1} v} v\right)=0
\end{gathered}
$$

derive the equation

$$
\left(a^{2}-u^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}-2 u v \frac{\partial^{2} \phi}{\partial x \partial y}+\left(a^{2}-v^{2}\right) \frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

satisfied by the potential ϕ for a steady irrotational motion in two dimensions.
If the flow is approximately uniform, with a speed U_{∞} in the direction of x increasing, show that the potential $\phi_{1}=\phi-U_{\infty} x$ satisfies the linear equation

$$
\left(M_{\infty}^{2}-1\right) \frac{\partial^{2} \phi_{1}}{\partial x^{2}}=\frac{\partial^{2} \phi_{1}}{\partial y^{2}}
$$

where M_{∞} is the Mach number of the uniform stream. Derive the linearised form of the boundary condition on a surface $y=\varepsilon f(x)$ where $|\varepsilon| \ll 1$.
Air flows in the $x y$-plane in the positive x-direction over an infinite corrugated surface $y=\varepsilon \sin k x$. Determine the perturbation potential $\phi_{1}(x, y)$ in both the subsonic and supersonic situations. Comment on the flow at large distances from the surface in each case.

