UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ţ

Mathematics C329: Functions Of A Complex Variable I

COURSE CODE	: MATHC329
UNIT VALUE	: 0.50
DATE	: 03-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

05-C0923-3-30 © 2005 University College London

TURN OVER

٠, '

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Define the maximal function M(r).
 - (b) State Schwarz's lemma.
 - (c) Use the maximum principle to prove the following generalisation of Schwarz's lemma: if f is a holomorphic function from the unit disc B(0, 1) into itself, and

$$f(0) = f'(0) = \ldots = f^{(n-1)}(0) = 0,$$

then $M(r) \leq r^n$.

- 2. Let \mathcal{F} be a family of functions defined on a domain D. Let A be an arbitrary subset of D.
 - (a) Define what it means that
 - (i) \mathcal{F} is uniformly bounded on A
 - (ii) \mathcal{F} is equicontinuous on A
 - (iii) \mathcal{F} is normal.
 - (b) State and prove Weierstrass' theorem.
 - (c) Show that there is a largest domain D on which

$$\mathcal{F} = \{ ne^{-nz} : n = 1, 2, \ldots \}$$

is normal, and find D.

- 3. (a) Define what the order of growth of an entire function means.
 - (b) Define the canonical factors $E_k(z)$, and state Hadamard's product theorem.
 - (c) Show that the Hadamard product of $\cos z$ is

$$\prod_{n=0}^{\infty} \left(1 - \frac{4z^2}{\pi^2 (2n+1)^2} \right).$$

You may use without proof that the order of growth of $\cos z$ is 1.

MATHC329

PLEASE TURN OVER

4. Consider the family of holomorphic functions f(z) on the unit disc B(0,1) of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$
 (*)

- (a) Show that there exists a constant c > 0 such that the image of any holomorphic function f given by (*) on the unit disc B(0, 1) contains a disc of radius c. (You may use the theorem that there exists a constant c' > 0 such that for any M and for any such function f(z), if $|f(z)| \leq M$ then the image f contains a disc around 0 of radius c'/M.)
- (b) Show that for any $0 \neq w \in \mathbb{C}$ there is a holomorphic function f(z) on B(0, 1) of the form (*) whose image does not contain w.
- (c) Deduce that one cannot always choose the centre of the disc in the statement(a) to be 0.
- 5. (a) Define Euler's constant γ and the function $\Gamma(z)$.
 - (b) State Gauss' formula and use it to prove that

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}, \quad z \notin \mathbb{Z}.$$

You may use the formula $\sin \pi z = \pi z \prod_{k=1}^{\infty} (1 - \frac{z^2}{k^2})$ without proof. (c) Calculate $|\Gamma(\frac{1}{2} + it)|$ for $t \in \mathbb{R}$.