University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C329: Functions Of A Complex Variable I

COURSE CODE : MATHC329

UNIT VALUE : 0.50

DATE : 03-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define the maximal function $M(r)$.
(b) State Schwarz's lemma.
(c) Use the maximum principle to prove the following generalisation of Schwarz's lemma: if f is a holomorphic function from the unit disc $B(0,1)$ into itself, and

$$
f(0)=f^{\prime}(0)=\ldots=f^{(n-1)}(0)=0
$$

then $M(r) \leq r^{n}$.
2. Let \mathcal{F} be a family of functions defined on a domain D. Let A be an arbitrary subset of D.
(a) Define what it means that
(i) \mathcal{F} is uniformly bounded on A
(ii) \mathcal{F} is equicontinuous on A
(iii) \mathcal{F} is normal.
(b) State and prove Weierstrass' theorem.
(c) Show that there is a largest domain D on which

$$
\mathcal{F}=\left\{n e^{-n z}: n=1,2, \ldots\right\}
$$

is normal, and find D.
3. (a) Define what the order of growth of an entire function means.
(b) Define the canonical factors $E_{k}(z)$, and state Hadamard's product theorem.
(c) Show that the Hadamard product of $\cos z$ is

$$
\prod_{n=0}^{\infty}\left(1-\frac{4 z^{2}}{\pi^{2}(2 n+1)^{2}}\right)
$$

You may use without proof that the order of growth of $\cos z$ is 1 .
4. Consider the family of holomorphic functions $f(z)$ on the unit disc $B(0,1)$ of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{*}
\end{equation*}
$$

(a) Show that there exists a constant $c>0$ such that the image of any holomorphic function f given by ($*$) on the unit disc $B(0,1)$ contains a disc of radius c. (You may use the theorem that there exists a constant $c^{\prime}>0$ such that for any M and for any such function $f(z)$, if $|f(z)| \leq M$ then the image f contains a disc around 0 of radius c^{\prime} / M.)
(b) Show that for any $0 \neq w \in \mathbb{C}$ there is a holomorphic function $f(z)$ on $B(0,1)$ of the form ($*$) whose image does not contain w.
(c) Deduce that one cannot always choose the centre of the disc in the statement (a) to be 0 .
5. (a) Define Euler's constant γ and the function $\Gamma(z)$.
(b) State Gauss' formula and use it to prove that

$$
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}, \quad z \notin \mathbb{Z}
$$

You may use the formula $\sin \pi z=\pi z \prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)$ without proof.
(c) Calculate $\left|\Gamma\left(\frac{1}{2}+i t\right)\right|$ for $t \in \mathbb{R}$.

