University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ķ

ĸ

Mathematics C329: Functions Of A Complex Variable I

COURSE CODE	: MATHC329
UNIT VALUE	: 0.50
DATE	: 11-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

à.

Υ.

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

- 1. State what is meant by a bilinear transformation. Show that the bilinear transformation $w = \frac{1}{z}$ maps a circle not passing through the origin onto a circle. Find the general form of the bilinear transformation mapping |z| < 1, conformally onto |w-2| < 1.
- 2. (a) Define what is meant by the holomorphic function f(z) having a <u>natural barrier</u>. By differentiation, show that the function $f(z) = \sum_{n=0}^{\infty} (2^n + 1)^{-1} z^{2^n+1}$ has |z| = 1 as a natural barrier.
 - (b) The function $f(z) = \sum_{n=0}^{\infty} (-1)^n z^n$ is defined for |z| < 1 with analytic continuation $F(z) = \frac{1}{1+z}$ to $\mathbb{C} \setminus \{-1\}$. By expanding f(z) about a non-real point a with |a| < 1, obtain a Taylor series expansion $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for f(z). For which values of z does this converge? Show that in fact it converges to the function F(z).

1

1

- 3. Suppose that the function f(z) is holomorphic for $|\arg z| \leq \frac{\pi}{2\alpha}$, $\alpha > \frac{1}{2}$ with $|f(z)| \leq M$ for $|\arg z| = \frac{\pi}{2\alpha}$. By considering $F(z) = \exp(-\varepsilon z^{\alpha})f(z)$ for $\varepsilon > 0$ show that either
 - (a) $|f(z)| \leq M$ for $|\arg z| \leq \frac{\pi}{2\alpha}$, or
 - (b) $\lim_{r\to\infty} \sup \frac{\log M(r)}{r^{\alpha}} > 0$,

where
$$M(r) = \max \left\{ |f(z)| : |z| \leq r, |\arg z| \leq \frac{\pi}{2\alpha} \right\}.$$

Explain why (b) can be strengthened to assert that

$$\lim_{r\to\infty}\inf\frac{\log M(r)}{r^{\alpha}}>0.$$

Any ancillary result required need not be proved but should be clearly stated.

4. (a) Define the class S of normalized univalent functions and show that if $f(z) \in S$ then also $\phi(z) = [f(z^2)]^{1/2} \in S$. Show that if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S$ then $|a_n| < en$ for all $n \ge 2$. You may assume that, if $f \in S$ then

$$\int_{0}^{2\pi} \left| f(re^{i\theta}) \right| d\theta < \frac{2\pi r}{1-r} \quad \text{for} \quad 0 < r < 1.$$

- (b) Show that the polynomial $p(z) = z + a_2 z^2 \in S$ if and only if $|a_2| \leq \frac{1}{2}$.
- 5. (a) Show that if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is univalent and $f(z) \neq \gamma$ for |z| < 1 then $|\gamma| \ge \frac{1}{4}$. When is equality attained? You may assume that if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is univalent then $|a_2| \le 2$.
 - (b) If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is holomorphic for |z| < 1 (but not necessarily univalent) and $|f'(z)| \leq 1$ for |z| < 1 show that again, if $f(z) \neq \gamma$ for |z| < 1, then $|\gamma| \ge \frac{1}{4}$. MATHC329 END OF PAPER