UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C329: Functions Of A Complex Variable I

COURSE CODE	: MATHC329
UNIT VALUE	: 0.50
DATE	: 30-APR-03
TIME	: 14.30
TIME ALLOWED	: 2 Hours

03-C0912-3-30 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. The function f(z) is holomorphic inside and on a closed contour C except for one point P on C. Moreover, $|f(z)| \leq M$ for $z \in C$ except for z = P. Suppose that we can find a function w(z), holomorphic and non-zero inside C such that, for every $\epsilon > 0$ there is a sequence $\{C_n\}$ of crosscuts of C with dist $(P, C_n) \longrightarrow 0$ as $n \longrightarrow \infty$ such that $|w(z)^{\varepsilon}f(z)| \leq M$ on C_n . Show then that $|f(z)| \leq M$ for z inside C.

Suppose now that C has length l and $|f(z)| \leq M$ on C. Use Cauchy's Integral Formula for $[f(z)]^n$ to show that, for z inside C,

$$\left|f(z)\right|^n \leqslant KM^n$$

for a suitable constant K independent of n. Deduce that $|f(z)| \leq M$ inside C.

2. Define the order ρ and lower order λ of an entire function f(z). Show that $z^{-\frac{1}{2}} \sin\left(z^{-\frac{1}{2}}\right)$ is an entire function and find its order and lower order.

Show that an entire function of order ρ can have at most 2ρ distinct radial asymptotic values. Any ancillary result used should be clearly stated but need not be proved.

- 3. Define the class S of univalent functions in the unit disk $\Delta = \{z : |z| < 1\}$. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S$, use the fact that $|a_2| \leq 2$ to prove the following assertions
 - (a) If $f(z) \neq \gamma$ for $z \in \Delta$ then $|\gamma| \ge \frac{1}{4}$.
 - (b) If $f(z) \neq \alpha$ and $\neq \beta$ and $\beta \neq \alpha$ than $\left|\frac{1}{\alpha} \frac{1}{\beta}\right| \leq 4$.

Show that the function $f(z) = \frac{z}{1-z^2}$ is in S and determine the image of Δ under f. Use this to show that in (b) the bound '4' cannot be replaced by any smaller number.

MATHC329

È

PLEASE TURN OVER

4. State what is meant by a mapping w = f(z) being *conformal* at a point $z = z_0$. Show that every bilinear transformation mapping the half-plane $y \ge 0$ onto $|w| \le 1$ is of the form

$$w = e^{i\lambda} \left(\frac{z - \alpha}{z - \overline{\alpha}} \right) \quad \lambda \in \mathbf{R}, \quad \text{Im } \alpha > 0,$$

where z = x + iy.

Find the general form of the conformal mapping of the first quadrant

$$\left\{z = x + iy : x^2 + y^2 \leqslant 1, \ x \ge 0, \ y \ge 0 \right\}$$

onto the closed disk $|w| \leq 1$.

- 5. (a) What is meant by a function having a closed curve C as a *natural barrier*. Give an example, with proof, of a function f(z) holomorphic in $\Delta = \{z : |z| < 1\}$ which has |z| = 1 as a natural barrier.
 - (b) State Parsevals' Identity. The function f(z) is holomorphic in Δ with f(0) = 0and $|f'(0)| \ge 1$. If $|f'(z)| \le M$ in Δ and $f(z) \ne \gamma$ in Δ , show that

$$|\gamma| \ge \frac{1}{4M}.$$

MATHC329

END OF PAPER

1