UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics C329: Functions Of A Complex Variable I

COURSE CODE : MATHC329

UNIT VALUE : 0.50

DATE : 30-APR-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. The function $f(z)$ is holomorphic inside and on a closed contour C except for one point P on C. Moreover, $|f(z)| \leqslant M$ for $z \in C$ except for $z=P$. Suppose that we can find a function $w(z)$, holomorphic and non-zero inside C such that, for every $\epsilon>0$ there is a sequence $\left\{C_{n}\right\}$ of crosscuts of C with dist $\left(P, C_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$ such that $\left|w(z)^{\varepsilon} f(z)\right| \leqslant M$ on C_{n}. Show then that $|f(z)| \leqslant M$ for z inside C.

Suppose now that C has length l and $|f(z)| \leqslant M$ on C. Use Cauchy's Integral Formula for $[f(z)]^{n}$ to show that, for z inside C,

$$
|f(z)|^{n} \leqslant K M^{n}
$$

for a suitable constant K independent of n. Deduce that $|f(z)| \leqslant M$ inside C.
2. Define the order ρ and lower order λ of an entire function $f(z)$. Show that $z^{-\frac{1}{2}} \sin \left(z^{-\frac{1}{2}}\right)$ is an entire function and find its order and lower order.

Show that an entire function of order ρ can have at most 2ρ distinct radial asymptotic values. Any ancillary result used should be clearly stated but need not be proved.
3. Define the class S of univalent functions in the unit disk $\Delta=\{z:|z|<1\}$. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S$, use the fact that $\left|a_{2}\right| \leqslant 2$ to prove the following assertions
(a) If $f(z) \neq \gamma$ for $z \in \Delta$ then $|\gamma| \geqslant \frac{1}{4}$.
(b) If $f(z) \neq \alpha$ and $\neq \beta$ and $\beta \neq \alpha$ than $\left|\frac{1}{\alpha}-\frac{1}{\beta}\right| \leqslant 4$.

Show that the function $f(z)=\frac{z}{1-z^{2}}$ is in S and determine the image of Δ under f.
Use this to show that in (b) the bound ' 4 ' cannot be replaced by any smaller number.
4. State what is meant by a mapping $w=f(z)$ being conformal at a point $z=z_{0}$.

Show that every bilinear transformation mapping the half-plane $y \geqslant 0$ onto $|w| \leqslant 1$ is of the form

$$
w=e^{i \lambda}\left(\frac{z-\alpha}{z-\bar{\alpha}}\right) \quad \lambda \in \mathbf{R}, \quad \operatorname{Im} \alpha>0
$$

where $z=x+i y$.
Find the general form of the conformal mapping of the first quadrant

$$
\left\{z=x+i y: x^{2}+y^{2} \leqslant 1, x \geqslant 0, y \geqslant 0\right\}
$$

onto the closed disk $|w| \leqslant 1$.
5. (a) What is meant by a function having a closed curve C as a natural barrier. Give an example, with proof, of a function $f(z)$ holomorphic in $\Delta=\{z:|z|<1\}$ which has $|z|=1$ as a natural barrier.
(b) State Parsevals' Identity. The function $f(z)$ is holomorphic in Δ with $f(0)=0$ and $\left|f^{\prime}(0)\right| \geqslant 1$. If $\left|f^{\prime}(z)\right| \leqslant M$ in Δ and $f(z) \neq \gamma$ in Δ, show that

$$
|\gamma| \geqslant \frac{1}{4 M}
$$

