UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٩

5

×

Mathematics C336: Functional Analysis

COURSE CODE	: MATHC336
UNIT VALUE	: 0.50
DATE	: 03-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) State the Hahn-Banach theorem for real normed spaces. Prove it for finitedimensional spaces.
 - (b) Show that, given any element x in a normed space V, the following identity holds:

$$||x|| = \sup_{f \in V^* \setminus \{0\}} \frac{|f(x)|}{||f||}$$

- 2. (a) State the Baire category theorem.
 - (b) State and prove the principle of uniform boundedness.
 - (c) Show that the principle of uniform boundedness is not valid in incomplete normed spaces.
 - (d) Let U and V be Banach spaces. Let $A_n, A \in B(U, V)$ and $x_n, x \in V^*$. Suppose that $s-\lim_{n\to\infty} A_n = A$ and $\lim_{n\to\infty} x_n = x$. Show that $A_n x_n$ converges strongly to Ax.
- 3. (a) State the Banach open mapping theorem.
 - (b) State and prove the closed graph theorem. You may use the open mapping theorem without proof.
 - (c) Let V_1 and V_2 be closed linear subspaces of a Banach space V and let $A: V \to V$ be a bounded linear operator. Suppose that $A(V_1) = V_2$. Show that there exists a constant C such that for each $y \in V_2$ there exists $x \in V_1$ such that $||x|| \leq C||y||$ and Ax = y.

MATHC336

1

PLEASE TURN OVER

- 4. (a) Let V be a Banach space and $A: V \to V$ be a bounded operator. Define the notions resolvent set, spectrum, point spectrum, discrete spectrum of A.
 - (b) Prove that the spectrum of A is a closed subset of the complex plane.
 - (c) Let A: l² → l² be an operator defined by Ae¹ = 0, Ae^j = e^{j-1} (j = 2, 3, 4, ...), where e^j are vectors of the standard basis of l². Find the eigenvalues and the spectrum of A.
- 5. (a) State the Banach contraction mapping theorem.
 - (b) Let A be a map from the complete non-empty metric space into itself such that A^k is a contraction for some $k \in \mathbb{N}$. Show that there exists a unique fixed point for A.
 - (c) Use this result to prove that the equation

$$f(t) + \int_{0}^{t} \left(\cos(s^{2} - st + t^{2}) + \sin(ts) \right) f(s) ds = 5t^{4} \qquad (0 \le s, t \le 1)$$

has a unique solution $f \in C[0, 1]$.

MATHC336

END OF PAPER