University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C336: Functional Analysis

COURSE CODE : MATHC336

UNIT VALUE : 0.50

DATE : 18-MAY-05
time
: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State the Hahn-Banach theorem for normed spaces.
(b) Show that, given any non-zero element x in a normed space V, there exists an element $f \in V^{*}$ such that $f(x)=\|x\|$ and $\|f\|=1$.
(c) (i) Prove that if $x_{n} \in V$ is a sequence such that

$$
w-\lim _{n \rightarrow \infty} x_{n}=x
$$

and there exists

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|
$$

then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\| \geq\|x\| .
$$

(ii) Give an example which show that it can happen that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|>\|x\|
$$

2. (a) State the Baire category theorem.
(b) State and prove the principle of uniform boundedness.
(c) Let V be a Banach spaces and U be a reflexive Banach space. Let $A_{n}, A \in$ $B(U, V)$ and $f_{n}, f \in V^{*}$. Suppose that $s-\lim _{n \rightarrow \infty} A_{n}=A$ and $w-\lim _{n \rightarrow \infty} f_{n}=f$. Define the functionals $f_{n} A_{n}, f A \in U^{*}$ by $f_{n} A_{n}(x)=f_{n}\left(A_{n}(x)\right), f A(x)=$ $f(A(x)), x \in U$. Show that $f_{n} A_{n}$ converges weakly to $f A$.
3. (a) State the Banach open mapping theorem.
(b) State and prove the closed graph theorem.
(c) Let V_{1} and V_{2} be closed linear subspaces of a Banach space V and suppose that V is an algebraic direct sum of V_{1} and V_{2}, i.e. given any $x \in V$, there exists a unique representation $x=x_{1}+x_{2}$, where $x_{i} \in V_{i}$. Define a map $P: V \rightarrow V$ by $x=x_{1}$. Show that P is linear and bounded.
4. (a) Let V be a Banach space and $A: V \rightarrow V$ be a bounded operator. Define the notions resolvent set, spectrum, discrete spectrum and essential spectrum of A.
(b) Prove that the spectrum of A is a closed subset of the complex plane.
(c) Let $A: l^{1} \rightarrow l^{1}$ be an operator defined by $A \mathbf{e}^{j}=\mathbf{e}^{j+1}(j=1,2, \ldots)$ where \mathbf{e}^{j} are vectors of the standard basis of l^{1}. Find the discrete spectrum and the spectrum of A.
5. (a) State the Banach contraction mapping theorem.
(b) Let A be a map from the complete metric space into itself such that A^{k} is a contraction for some $k \in \mathbb{N}$. Show that there exists a unique fixed point for A.
(c) Use this result to prove that the equation

$$
f(t)+\frac{4}{3} \int_{0}^{t} \cos (s+t) f(s) d s=e^{t} \quad(0 \leq s, t \leq 1)
$$

has a unique solution $f \in C[0,1]$.

