UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

İ

Mathematics C336: Functional Analysis

COURSE CODE	:	MATHC336
UNIT VALUE	:	0.50
DATE	:	18-MAY-05
TIME	:	14.30
TIME ALLOWED	:	2 Hours

05-C0927-3-40 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) State the Hahn-Banach theorem for normed spaces.
 - (b) Show that, given any non-zero element x in a normed space V, there exists an element $f \in V^*$ such that f(x) = ||x|| and ||f|| = 1.
 - (c) (i) Prove that if $x_n \in V$ is a sequence such that

$$w\operatorname{-lim}_{n \to \infty} x_n = x$$

and there exists

 $\lim_{n\to\infty}||x_n||,$

then

$$\lim_{n \to \infty} ||x_n|| \ge ||x||.$$

(ii) Give an example which show that it can happen that

$$\lim_{n\to\infty}||x_n||>||x||.$$

- 2. (a) State the Baire category theorem.
 - (b) State and prove the principle of uniform boundedness.
 - (c) Let V be a Banach spaces and U be a reflexive Banach space. Let $A_n, A \in B(U, V)$ and $f_n, f \in V^*$. Suppose that $s-\lim_{n\to\infty} A_n = A$ and $w-\lim_{n\to\infty} f_n = f$. Define the functionals $f_n A_n, f A \in U^*$ by $f_n A_n(x) = f_n(A_n(x)), f A(x) = f(A(x)), x \in U$. Show that $f_n A_n$ converges weakly to f A.
- 3. (a) State the Banach open mapping theorem.
 - (b) State and prove the closed graph theorem.
 - (c) Let V_1 and V_2 be closed linear subspaces of a Banach space V and suppose that V is an algebraic direct sum of V_1 and V_2 , i.e. given any $x \in V$, there exists a unique representation $x = x_1 + x_2$, where $x_i \in V_i$. Define a map $P: V \to V$ by $x = x_1$. Show that P is linear and bounded.

MATHC336

PLEASE TURN OVER

- 4. (a) Let V be a Banach space and $A: V \to V$ be a bounded operator. Define the notions resolvent set, spectrum, discrete spectrum and essential spectrum of A.
 - (b) Prove that the spectrum of A is a closed subset of the complex plane.
 - (c) Let $A : l^1 \to l^1$ be an operator defined by $Ae^j = e^{j+1}$ (j = 1, 2, ...) where e^j are vectors of the standard basis of l^1 . Find the discrete spectrum and the spectrum of A.
- 5. (a) State the Banach contraction mapping theorem.
 - (b) Let A be a map from the complete metric space into itself such that A^k is a contraction for some $k \in \mathbb{N}$. Show that there exists a unique fixed point for A.
 - (c) Use this result to prove that the equation

$$f(t) + rac{4}{3} \int\limits_{0}^{t} \cos(s+t) f(s) ds = e^t \qquad (0 \le s, t \le 1)$$

has a unique solution $f \in C[0, 1]$.

MATHC336

END OF PAPER

ţ