UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C336: Functional Analysis

COURSE CODE	:	MATHC336
UNIT VALUE	:	0.50
DATE	:	05-MAY-04
TIME	:	10.00
TIME ALLOWED	:	2 Hours

TURN OVER

÷ ,

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) State the Hahn-Banach theorem for normed spaces.
 - (b) Show that, given any non-zero element x in a normed space V, there exists an element $f \in V^*$ such that f(x) = ||x|| and ||f|| = 1.
 - (c) Let U, V be normed linear spaces, and $A \in B(V, U)$ be a bounded operator. Define the operator $A^* : U^* \to V^*$ by the formula:

$$(A^*f)(x) = f(Ax) \qquad (x \in V, f \in U^*).$$

Prove that A^* is a continuous linear operator, and $||A^*|| = ||A||$.

2. (a) State and prove the principle of uniform boundedness (you can assume the Baire category theorem).

(b) Suppose that {α_k} is a sequence of real numbers such that the series ∑_{k=1}[∞] α_kx_k converges whenever {x_k} is a sequence of real numbers such that ∑_{k=1}[∞] x_k² < ∞. Using the above result or otherwise show that ∑_{k=1}[∞] α_k² < ∞.

- 3. (a) State the Banach open mapping theorem.
 - (b) Prove that if U, V are Banach spaces, and $A \in B(U, V)$ is a bijection, then $A^{-1} \in B(V, U)$.
 - (c) Let X be a closed subspace of C[0,2]. Suppose for every $f \in C[0,1]$ there is an $F \in X$ whose restriction to [0,1] is f. Show that there is a constant C such that the function F can always be chosen to satisfy $||F||_{C[0,2]} \leq C||f||_{C[0,1]}$.

MATHC336

PLEASE TURN OVER

- 4. (a) State and prove the closed graph theorem (you can assume the open mapping theorem).
 - (b) Let V_1 and V_2 be closed linear subspaces of a Banach space V and suppose that V is an algebraic direct sum of V_1 and V_2 , i.e. given any $x \in V$, there exists a unique representation $x = x_1 + x_2$, where $x_i \in V_i$. Define a map $P: V \to V$ by $Px = x_1$. Show that P is linear and bounded.
- 5. (a) State and prove the Baire category theorem. You must prove all auxiliary statements you use.
 - (b) Prove that the set A consisting of polynomials with rational coefficients is of the first category in C[0, 1].

MATHC336

END OF PAPER