UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C336: Functional Analysis

COURSE CODE	:	MATHC336
UNIT VALUE	:	0.50
DATE	:	19-MAY-03
TIME	:	14.30
TIME ALLOWED	:	2 Hours

03-C0916-3-30 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. a) Give the definitions of a base and a subbase for a topology.
 - b) Define the product topology on a product space and prove that the product of any family of compact topological spaces is compact. You may assume Alexander's Subbase Theorem.
 - c) Let X be a normed linear space. Prove that the unit ball

$$B_1^* = \{F \in X^* : \|F\| \le 1\}$$

in the dual X^* of a normed linear space X is w^* -compact.

2. a) Let F_1, \ldots, F_n and F be linear functionals on a vector space X over \mathbb{R} and let

$$N = \{ x : F_1 x = \dots = F_n x = 0 \}.$$

Prove that the following properties are equivalent:

(i) There are scalars $\alpha_1, \ldots, \alpha_n$ such that

$$F = \sum_{i=1}^{n} \alpha_i F_i.$$

(ii) There is a $\lambda \in \mathbb{R}$ such that

$$|Fx| \le \lambda \max\{|F_ix| : i = 1, \dots, n\}$$

for all $x \in X$.

- (iii) Fx = 0 for all $x \in N$.
- b) Prove that, if F is a linear functional on the dual X^* of a normed linear space which is continuous in the weak*-topology, then

$$F \in \Phi[X],$$

where $\Phi: X \to X^{**}$ is the canonical embedding.

MATHC336

ş

PLEASE TURN OVER

- 3. Let A and B be disjoint nonempty convex sets in a real normed linear space X.
 - a) If A has an interior point, then there is an $F \in X^*$, $F \neq 0$, and $\gamma \in \mathbb{R}$ such that

$$F(a) \le \gamma \le F(b)$$

for all $a \in A$ and for all $b \in B$.

b) If A and B are either both open or have dist (A, B) > 0, then there is an $F \in X^*$ and $\gamma \in \mathbb{R}$ such that

$$F(a) < \gamma < F(b)$$

for all $a \in A$ and for all $b \in B$.

- 4. Let K be a weakly compact subset of a real Banach space X and let E(K) denote the set of extreme points of K. Let K have the relative topology induced by the weak topology on X. Suppose $x_0 \in E(K)$ and U is an open subset of K containing x_0 .
 - a) Prove that there is an $F \in X^*$ and $\gamma > 0$ such that

$$x_0 \in \{x \in K : F(x) > \gamma\} \subset \{x \in K : F(x) \ge \gamma\} \subset U.$$

- b) Prove that if U_n , n = 1, 2, ..., are relatively open dense subsets of E(K), then $\bigcap_{n=1}^{\infty} U_n$ is dense in E(K).
- 5. a) State the Hahn-Banach Theorem.
 - b) If M is a subspace of a real normed linear space X and if $f \in M^*$, prove that f can be extended to an $F \in X^*$ such that ||f|| = ||F||.
 - c) Let X be a real normed linear space and $x \in X$, $x \neq 0$. Prove that there exists an $F \in X^*$ such that Fx = ||x|| and ||F|| = 1.
 - d) Let X be an infinite dimensional real normed linear space. Let $S = \{F \in X^* : ||F|| = 1\}$ be the unit sphere in the dual space X^* and let $B = \{F \in X^* : ||F|| \le 1\}$ be the unit ball. Prove that S is dense in B in the weak^{*} topology.

MATHC336

END OF PAPER

ş