UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

Mathematics C336: Functional Analysis

COURSE CODE	:	MATHC336
UNIT VALUE	:	0.50
DATE	:	16-MAY-02
TIME	:	14.30
TIME ALLOWED	:	2 hours

02-C0914-3-40

© 2002 University of London

~

TURN OVER

.

.

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. a) State the Open Mapping Theorem and give a proof of the special case when the range is finite dimensional.
 - b) Let X, Y be Banach spaces, Z a normed linear space, $S \in \mathcal{L}(X,Y), T \in \mathcal{L}(X,Z)$. Use (a) to prove that if S is surjective and ker $S \subseteq \ker T$, then there exists a unique $R \in \mathcal{L}(Y,Z)$ such that $T = R \circ S$.
- 2. a) State and prove the Uniform Boundedness Principle (i.e., Banach-Steinhaus Theorem).
 - b) Prove that if (T_n) is a sequence of continuous linear maps of a Banach space X into a real normed linear space Y such that $\lim_{n\to\infty} T_n x$ exists for all $x \in X$, then the map $T: X \to Y$ defined by

$$Tx = \lim_{n \to \infty} T_n x$$

is continuous.

- a) Let X* be the dual of a real normed linear space X. Prove that if a linear functional f on X* separates a non-empty weak* open set B from another set A in X* (i.e. there exists λ ∈ ℝ such that Fb ≤ λ ≤ Fa for all b ∈ B, a ∈ A), then f is weak* continuous.
 - b) Prove that if A is a weak* closed convex subset of X^* and $F_0 \in X^* \setminus A$, then there is a weak* continuous $f \in X^{**}$ and $\gamma \in \mathbb{R}$ such that

$$fF_0 < \gamma < fF$$
 for all $F \in A$.

c) Prove that the unit ball in the dual X^* of a real normed space X is the weak^{*} closed convex hull of its extreme points.

PLEASE TURN OVER

MATHC336

4. a) If Y is a proper close linear subspace of a normed space X, and $\epsilon > 0$, prove that there is a $x_{\epsilon} \in X$, $||x_{\epsilon}|| = 1$, such that

$$\inf\{\|y - x_{\epsilon}\| : y \in Y\} > 1 - \epsilon.$$

Hint: If x is a point not in Y and $\epsilon > 0$, choose a point in Y within $(1 + \epsilon)$ times the distance between x and Y from x.

- b) Prove that if X is infinite dimensional, then the closed unit ball in X has an open cover without a finite subcover.
- 5. A Banach limit is any bounded linear functional L on ℓ_{∞} such that for $x = (x_1, x_2, \ldots) \in \ell_{\infty}$,
 - i) $L(x) \ge 0$ if $x_n \ge 0$ for all n,
 - ii) $L(x) = L(\sigma x)$, where $\sigma(x) = (x_2, x_3, ...)$,
 - iii) L(x) = 1 if x = (1, 1, 1, ...).

Prove that

- a) if L is a Banach limit, then $\underline{\lim} x_n \leq L(x) \leq \overline{\lim} x_n$ for all $x \in \ell_{\infty}$ (Hint: note that it follows from ii) that it suffices to prove that $\inf x_n \leq L(x) \leq \sup x_n$);
- b) Banach limits exist. (Hint: define $l: c \to \mathbb{R}$ by $l(x) = \lim_{n \to \infty} x_n$ and consider the function $p: \ell_{\infty} \to \mathbb{R}$ defined by $p(x) = \overline{\lim} \frac{x_1 + \dots + x_n}{n}$.)

MATHC336

END OF PAPER