UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

3

3

Mathematics C356: Fractal Geometry

COURSE CODE	: MATHC356
UNIT VALUE	: 0.50
DATE	: 15-MAY-06
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Give the definition of a similitude $w : \mathbb{R}^2 \to \mathbb{R}^2$.
 - (b) Show that if $w : \mathbb{R}^2 \to \mathbb{R}^2$ is a similitude, w(x) = Ax + b, where $b \in \mathbb{R}^2$ and A is a 2×2 matrix, then A can be written either as $A = rR_{\theta}$ or as $A = rRR_{\theta}$, where R is a reflection and R_{θ} is a rotation by an angle θ , $0 \le \theta < 2\pi$.
 - (c) Verify that the following two functions are similitudes and find their scaling factors:

$$w_1\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} .4 & .3\\ .3 & -.4 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
$$w_2\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} .24 & .07\\ -.07 & .24 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

- (d) Find the fractal dimension of the attractor of the hyperbolic iterated functions system $\{\mathbb{R}^2; w_1, w_2\}$.
- 2. Let A be a non-empty compact subset of a complete metric space X.
 - (a) Give the definition of the fractal dimension D(A) of A.
 - (b) Prove that if 0 < r < 1, $\epsilon_n = r^n$ and $D = \lim_{n \to \infty} \frac{\ln(\mathcal{N}(A, \epsilon_n))}{-\ln \epsilon_n}$ exists, then D is the fractal dimension of A. Here $\mathcal{N}(A, \epsilon_n)$ is the smallest number of closed balls of radius ϵ_n that cover the set A.
 - (c) Give the definition of the Hausdorff-Besicovitch dimension of a subset of \mathbb{R}^m . Prove that the Hausdorff-Besicovitch dimension of any countable set is zero.
 - (d) Compute the fractal dimension of the compact set $\{1, 0, 1/2, 1/3, \ldots, 1/n, \ldots\}$ in \mathbb{R} .
- 3. (a) Let $\{X; w_1, w_2, \ldots, w_N\}$ be a hyperbolic IFS. Give the definition of the code space associated with the IFS and the metric on the code space.
 - (b) Let $\{X; w_1, \ldots, w_N\}$ be a hyperbolic IFS. For σ in the code space Σ , $n \in \mathbb{N}$, and $x \in X$ let $\phi(\sigma, n, x) = w_{\sigma_1} \circ \ldots \circ w_{\sigma_n}(x)$ and $\phi(\sigma) = \lim_{n \to \infty} \phi(\sigma, n, x)$. An address of a point a in the attractor A of the IFS is any element of the set $\phi^{-1}(a) = \{\omega \in \Sigma : \phi(\omega) = a\}$. Prove that a point $x \in A$ is a periodic point of the IFS if and only if it has a periodic address.

MATHC356

PLEASE TURN OVER

- (c) Define what it means for the IFS to be totally disconnected, just-touching and overlapping.
 - (i) Prove that a hyperbolic IFS $\{X; w_1, w_2, \ldots, w_N\}$ is totally disconnected if and only if $w_i(A) \cap w_j(A) =$ for all $i, j \in \{1, 2, \ldots, N\}$.
 - (ii) Give an example in \mathbb{R} of an IFS that is just touching. Justify your example.
- 4. Let \mathbb{C} denote the complex plane.
 - (a) Consider a set A in C that is constructed by replacing the square with vertices 0, 1, i, 1 + i by four squares of $\frac{1}{5}$ the side length positioned inside the square in the corners, then replacing these four boxes each by four boxes of $\frac{1}{5}$ their side lengths, and iterating this process. Construct a hyperbolic IFS whose attractor is A and compute the fractal dimension of A.
 - (b) Prove that if $f : \mathbb{C} \to \mathbb{C}$ is a continuous function and $z_0 \in \mathbb{C}$, then $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ exists if and only if there exists a similitude of the form w(z) = az + b, where $a, b \in \mathbb{C}$, such that $\lim_{z \to z_0} \frac{|f(z) w(z)|}{|z z_0|} = 0$.
 - (c) Find a similitude that approximates the behaviour of $f(z) = (z 1)^3$ near $z_0 = 1 i$.
- 5. Let X denote a compact metric space and $\mathcal{H}(X)$ the space of non-empty closed subsets of X.
 - (a) Define the Hausdorff metric h on $\mathcal{H}(X)$ and prove that for every $\epsilon > 0$ and every $E \in (\mathcal{H}(X), h)$ there exists a finite subset F of E such that $\mathcal{H}(F, E) < \epsilon$.
 - (b) Prove that a decreasing sequence (K_n) of non-empty compact sets in X is a Cauchy sequence in $(\mathcal{H}(X), h)$ with limit $\bigcap_{n=1}^{\infty} K_n$.

MATHC356

END OF PAPER