EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C356: Fractal Geometry

COURSE CODE : MATHC356

UNIT VALUE : 0.50

DATE : 11-MAY-05

TIME : 14.30

TIME ALLOWED
: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let X denote a complete metric space and $\mathcal{F}(X)$ the space of non-empty closed bounded subsets of X.
(a) Define the Hausdorff metric h on $\mathcal{F}(X)$ and prove that $(\mathcal{F}(X), h)$ is complete.
(b) Prove that if $\left(E_{n}\right)$ is a Cauchy sequence in $(\mathcal{F}(X), h)$, then it converges to the set $E=\left\{x \in X: \exists\right.$ a Cauchy sequence $\left(x_{n}\right)$ with $x_{n} \in E_{n}$ such that $\left.\lim _{n \rightarrow \infty} x_{n}=x\right\}$.
2. (a) Give the definition of a similitude $w: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(b) Show that the following maps are similitudes and find their scaling factors:

$$
\begin{aligned}
& w_{1}\binom{x}{y}=\frac{1}{10}\left(\begin{array}{cc}
2 & \frac{3}{2} \\
\frac{3}{2} & -2
\end{array}\right)\binom{x}{y}+\binom{0}{\frac{3}{2}} \\
& w_{2}\binom{x}{y}=\frac{1}{25}\left(\begin{array}{cc}
6 & -\frac{7}{4} \\
\frac{7}{4} & 6
\end{array}\right)\binom{x}{y}+\binom{0}{-\frac{3}{2}} \\
& w_{2}\binom{x}{y}=\frac{\sqrt{2}}{4}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}+\binom{1}{0}
\end{aligned}
$$

(c) Show that the IFS $\left\{\mathbb{R}^{2} ; w_{1}, w_{2}, w_{3}\right\}$ is totally disconnected.
(d) Find the fractal dimension of the attractor of the hyperbolic iterated functions system $\left\{\mathbb{R}^{2} ; w_{1}, w_{2}, w_{3}\right\}$.
3. Let A be a non-empty compact subset of a complete metric space X.
(a) Give the definition of the fractal dimension $D(A)$ of A.
(b) Prove that if $D=\lim _{n \rightarrow \infty} \frac{\ln \left(\mathcal{N}\left(A, 2^{-n}\right)\right)}{\ln \left(2^{n}\right)}$ exists, then D is the fractal dimension of A. Here $\mathcal{N}\left(A, 2^{-n}\right)$ is the smallest number of closed balls of radius 2^{-n} that cover the set A.
(c) Let $A \subset \mathbb{R}^{d}$, cover \mathbb{R}^{d} by boxes of side length 2^{-n} that just touch at the sides, and let $\mathcal{N}_{n}(A)$ denote the number of boxes that intersect A. If A is a non-empty compact subset of \mathbb{R}^{d} with fractal dimension $D(A)$, show that $D(A)=\lim _{n \rightarrow \infty} \frac{\ln \left(\mathcal{N}_{n}(A)\right)}{\ln \left(2^{n}\right)}$.
4. Consider a set A in \mathbb{R}^{2} that is constructed by replacing the square with vertices $(0,0),(1,0),(0,1),(1,1)$ by five squares of $\frac{1}{3}$ the side length positioned inside the square with four in the corners and one in the centre, then replacing these five boxes each by five boxes of $\frac{1}{3}$ their side lengths in the same way, and iterating this process. Construct a just-touching hyperbolic IFS whose attractor is A and compute the fractal dimension of A.
5. Let $\left\{X ; w_{1}, w_{2}, \ldots, w_{N}\right\}$ be a hyperbolic IFS on a complete metric space X.
(a) Give the definition of the code space associated with the IFS and the metric on the code space.
(b) Let K be a non-empty compact subset of X. Show that there exists a compact subset K^{\prime} of X such that $K \subset K^{\prime}$ and $w_{n}: K^{\prime} \rightarrow K^{\prime}$ for $n=1,2, \ldots, N$.
(c) For σ in the code space $\Sigma, n \in \mathbb{N}$, and $x \in X$ let $\phi(\sigma, n, x)=w_{\sigma_{1}} \circ \ldots \circ w_{\sigma_{n}}(x)$ and $\phi(\sigma, x)=\lim _{n \rightarrow \infty} \phi(\sigma, n, x)$. Show that the convergence is uniform on compact subsets of X, and that $\phi(\sigma, x)=\phi(\sigma, y)$ for any x and y in X.

