UNIVERSITY COLLEGE LONDON

University of London

ħ,

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C356: Fractal Geometry

COURSE CODE	: MATHC356
UNIT VALUE	: 0.50
DATE	: 11 -MAY-05
ТІМЕ	: 14.30
	: 2 Hours

05-C0933-3-30 © 2005 University College London

TURN OVER

ļ

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Let X denote a complete metric space and $\mathcal{F}(X)$ the space of non-empty closed bounded subsets of X.
 - (a) Define the Hausdorff metric h on $\mathcal{F}(X)$ and prove that $(\mathcal{F}(X), h)$ is complete.
 - (b) Prove that if (E_n) is a Cauchy sequence in (F(X), h), then it converges to the set E = {x ∈ X : ∃ a Cauchy sequence (x_n) with x_n ∈ E_n such that lim_{n→∞} x_n = x}.
- 2. (a) Give the definition of a similitude $w : \mathbb{R}^2 \to \mathbb{R}^2$.
 - (b) Show that the following maps are similitudes and find their scaling factors:

$$w_1\begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{10}\begin{pmatrix}2&\frac{3}{2}\\\frac{3}{2}&-2\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}0\\\frac{3}{2}\end{pmatrix}$$
$$w_2\begin{pmatrix}x\\y\end{pmatrix} = \frac{1}{25}\begin{pmatrix}6&-\frac{7}{4}\\\frac{7}{4}&6\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}0\\-\frac{3}{2}\end{pmatrix}$$
$$w_2\begin{pmatrix}x\\y\end{pmatrix} = \frac{\sqrt{2}}{4}\begin{pmatrix}1&1\\-1&1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} + \begin{pmatrix}1\\0\end{pmatrix}$$

- (c) Show that the IFS $\{\mathbb{R}^2; w_1, w_2, w_3\}$ is totally disconnected.
- (d) Find the fractal dimension of the attractor of the hyperbolic iterated functions system $\{\mathbb{R}^2; w_1, w_2, w_3\}$.
- 3. Let A be a non-empty compact subset of a complete metric space X.
 - (a) Give the definition of the fractal dimension D(A) of A.
 - (b) Prove that if $D = \lim_{n\to\infty} \frac{\ln(\mathcal{N}(A,2^{-n}))}{\ln(2^n)}$ exists, then D is the fractal dimension of A. Here $\mathcal{N}(A,2^{-n})$ is the smallest number of closed balls of radius 2^{-n} that cover the set A.
 - (c) Let $A \subset \mathbb{R}^d$, cover \mathbb{R}^d by boxes of side length 2^{-n} that just touch at the sides, and let $\mathcal{N}_n(A)$ denote the number of boxes that intersect A. If A is a non-empty compact subset of \mathbb{R}^d with fractal dimension D(A), show that $D(A) = \lim_{n \to \infty} \frac{\ln(\mathcal{N}_n(A))}{\ln(2^n)}$.

MATHC356

1

PLEASE TURN OVER

- 4. Consider a set A in \mathbb{R}^2 that is constructed by replacing the square with vertices (0,0), (1,0), (0,1), (1,1) by five squares of $\frac{1}{3}$ the side length positioned inside the square with four in the corners and one in the centre, then replacing these five boxes each by five boxes of $\frac{1}{3}$ their side lengths in the same way, and iterating this process. Construct a just-touching hyperbolic IFS whose attractor is A and compute the fractal dimension of A.
- 5. Let $\{X; w_1, w_2, \ldots, w_N\}$ be a hyperbolic IFS on a complete metric space X.
 - (a) Give the definition of the code space associated with the IFS and the metric on the code space.
 - (b) Let K be a non-empty compact subset of X. Show that there exists a compact subset K' of X such that $K \subset K'$ and $w_n : K' \to K'$ for n = 1, 2, ..., N.
 - (c) For σ in the code space Σ , $n \in \mathbb{N}$, and $x \in X$ let $\phi(\sigma, n, x) = w_{\sigma_1} \circ \ldots \circ w_{\sigma_n}(x)$ and $\phi(\sigma, x) = \lim_{n \to \infty} \phi(\sigma, n, x)$. Show that the convergence is uniform on compact subsets of X, and that $\phi(\sigma, x) = \phi(\sigma, y)$ for any x and y in X.

3 l

1