

UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C356: Fractal Geometry

COURSE CODE	: MATHC356
UNIT VALUE	: 0.50
DATE	: 10-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Give the definition of a similitude $w : \mathbb{R}^2 \to \mathbb{R}^2$.
 - (b) Show that if $w : \mathbb{R}^2 \to \mathbb{R}^2$ is a similitude, w(x) = Ax + b, where $b \in \mathbb{R}^2$ and A is a 2×2 matrix, then A can be written either as $A = rR_{\theta}$ or as $A = rRR_{\theta}$, where R is a reflection and R_{θ} is a rotation by an angle θ , $0 \le \theta < 2\pi$ and r > 0.
 - (c) Verify that the following two functions are similitudes and find their scaling factors:

$$w_1\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} .2 & .15\\ .15 & -.2 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
$$w_2\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} .24 & -.07\\ .07 & .24 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

- (d) Find the fractal dimension of the attractor of the hyperbolic iterated functions system $\{\mathbb{R}^2; w_1, w_2\}$.
- 2. Let K be a non-empty compact subset of a complete metric space X.
 - (a) Give the definition of the fractal dimension D(K) of K.
 - (b) Prove that if 0 < r < 1, $\epsilon_n = r^n$ and $D = \lim_{n \to \infty} \frac{\ln(\mathcal{N}(K, \epsilon_n))}{-\ln \epsilon_n}$ exists, then D is the fractal dimension of K. Here $\mathcal{N}(K, \epsilon_n)$ is the smallest number of closed balls of radius ϵ_n that cover the set K.
 - (c) Give the definition of the Hausdorff-Besicovitch dimension of a subset of \mathbb{R}^d . Prove that the Hausdorff-Besicovitch dimension of any countable set is zero.
 - (d) Compute the fractal dimension of the compact set $\{0, 1, 1/2, 1/3, ..., 1/n, ...\}$ in the unit interval.
- 3. Let K denote a compact metric space and $\mathcal{H}(K)$ the space of non-empty closed subsets of K.
 - (a) Define the Hausdorff metric h on $\mathcal{H}(K)$ and prove that $(\mathcal{H}(K), h)$ is totally bounded.
 - (b) Prove that a decreasing sequence (J_n) of non-empty closed sets in K is a Cauchy sequence in $(\mathcal{H}(K), h)$ with limit $\bigcap_{n=1}^{\infty} J_n$.

MATHC356

PLEASE TURN OVER

- 4. (a) Let $\{X; w_1, w_2, \ldots, w_N\}$ be a hyperbolic IFS. Give the definition of the code space associated with the IFS and the metric on the code space.
 - (b) Let {X; w₁,..., w_N} be a hyperbolic IFS. For σ in the code space Σ, n ∈ N, and x ∈ X let φ(σ, n, x) = w_{σ1} ∘ ... ∘ w_{σn}(x) and φ(σ) = lim_{n→∞} φ(σ, n, x). An address of a point a in the attractor A of the IFS is any element of the set φ⁻¹(a) = {ω ∈ Σ : φ(ω) = a}. Prove that a point x ∈ A is a periodic point of the IFS if and only if it has a periodic address.
 - (c) Define what it means for the IFS to be totally disconnected, just-touching and overlapping.
 - (i) Prove that a hyperbolic IFS $\{X; w_1, w_2, \ldots, w_N\}$ with attractor A is totally disconnected if and only if $w_i(A) \cap w_j(A) = \emptyset$ for all $i \neq j, i, j \in \{1, 2, \ldots, N\}$.
 - (ii) Prove that the IFS $\{\mathbb{R}; \frac{1}{2}x, \frac{1}{2}x + \frac{1}{2}\}$ is just-touching.
- 5. Let \mathbb{C} denote the complex plane.
 - (a) Consider a set A in C that is constructed by replacing the square with vertices 0, 1, i, 1 + i by four squares of ¹/₁₀ the side length positioned inside the square in the corners, then replacing these four boxes each by four boxes of ¹/₁₀ their side lengths, and iterating this process. Construct a hyperbolic IFS whose attractor is A and compute the fractal dimension of A.
 - (b) Prove that if $f : \mathbb{C} \to \mathbb{C}$ is a continuous function and $z_0 \in \mathbb{C}$, then $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ exists if and only if there exists a similitude of the form w(z) = az + b, where $a, b \in \mathbb{C}$, such that $\lim_{z \to z_0} \frac{|f(z) w(z)|}{|z z_0|} = 0$.
 - (c) Find a similitude that approximates the behaviour of $f(z) = (z 1)^5$ near $z_0 = 1 + i$.

MATHC356

END OF PAPER