UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C356: Fractal Geometry

COURSE CODE	:	MATHC356
UNIT VALUE	:	0.50
DATE	:	29-MAY-03
TIME	:	10.00
TIME ALLOWED	:	2 Hours

03-C0922-3-30 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. Let (X, d) denote a metric space and $\mathcal{F}(X)$ the space of non-empty closed bounded subsets of X.
 - (a) Define h on $\mathcal{F}(X)$ by

 $h(A, B) = \sup\{d(x, B), d(y, A) : x \in A, y \in B\}.$

Prove that h is a metric on $\mathcal{F}(X)$.

- (b) If (X, d) is compact, prove that $(\mathcal{F}(X), h)$ is compact.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a contraction map.
 - (a) Show that f has exactly one fixed point.
 - (b) Prove that $(f^n([0, 1]))_{n=0}^{\infty}$ is a Cauchy sequence in the space of non-empty closed bounded subsets of \mathbb{R} with the Hausdorff metric h, and show that it converges to the fixed point of f.
 - (c) Consider $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{4}x + \frac{1}{2}$. Show that f is a contraction, find its fixed point and show directly that $(f^n([0, 1]))_{n=0}^{\infty}$ converges to this fixed point. Show that $(f^n(\mathbb{R}))_{n=0}^{\infty}$ does not converge to the fixed point of f in any reasonable sense.

MATHC356

PLEASE TURN OVER

- 3. (a) Give the definition of a similitude $w : \mathbb{R}^2 \to \mathbb{R}^2$ and the definition of a Möbius transformation on $\hat{\mathbb{C}}$.
 - (b) Show that a Möbius transformation that maps ∞ to ∞ is of the form f(z) = az + b, where $a, b \in \mathbb{C}$ and $a \neq 0$, and show that this is a similitude not involving a reflection.
 - (c) Verify that the following two functions are similitudes and find their scaling factors:

$$w_1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & -0.6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
$$w_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0.4 & 0.3 \\ 0.3 & -0.4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

- (d) Find the fractal dimension of the attractor of the hyperbolic iterated functions system $\{\mathbb{R}^2; w_1, w_2\}$.
- 4. Let A be a non-empty compact subset of a complete metric space X.
 - (a) Give the definition of the fractal dimension D(A) of A.
 - (b) Describe the attractor of the IFS

$$\{\mathbb{C}; w_1 = \frac{1}{10}z, w_2 = \frac{1}{10}z + \frac{9}{10}, w_3 = \frac{1}{10}z + \frac{9}{10}i, w_4 = \frac{1}{10}z + (\frac{9}{10} + \frac{9}{10}i)\}$$

by drawing the first two iterations starting from the square with vertices 0, 1, i, 1 + i and compute its fractal dimension.

- (c) Give the definition of the Hausdorff-Besicovitch dimension of a subset of \mathbb{R}^m .
- (d) Let $A = \{0, 1, 1/n : n \in \mathbb{N}\}$ in \mathbb{R} . Show that the Hausdorff-Besicovitch dimension of A is not equal to the fractal dimension of A.
- 5. (a) Let $\{X; w_1, w_2, \ldots, w_N\}$ be a hyperbolic IFS. Give the definition of the code space associated with the IFS and the metric on the code space.
 - (b) For a totally disconnected hyperbolic IFS $\{X; w_1, \ldots, w_N\}$ give the definition of the shift dynamical system $\{S; A\}$ associated with $\{X; w_1, \ldots, w_N\}$. Describe how it is equivalent to the dynamical system $\{\Sigma_N : T\}$, where $T(\sigma_1 \sigma_2 \ldots) = (\sigma_2 \sigma_3 \ldots)$.
 - (c) Consider the IFS { \mathbb{C} ; w_1, w_2, w_3 }, where $w_1(z) = \frac{3}{7}z$, $w_2(z) = \frac{3}{7}z + 1$, and $w_3(z) = \frac{3}{7}z + i$. Let $\phi : \Sigma_3 \to A$ be the associated code space map and let $a_0 = \phi(13113\overline{22})$. Find the orbit of a_0 and show that it converges to a repulsive fixed point of S.

MATHC356

END OF PAPER