UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc.

Mathematics C356: Fractal Geometry

COURSE CODE	: MATHC356
UNIT VALUE	: 0.50
DATE	: 01-MAY-02
TIME	: 10.00
TIME ALLOWED	: 2 hours

02-C0918-3-30

© 2002 University of London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Give the definition of a Möbius transformation on \mathbb{C} .
 - (b) Show that the most general Möbius transformation, which maps ∞ to ∞ , is of the form f(z) = az + b, $a, b \in \hat{\mathbb{C}}$, $a \neq 0$, and show that this is a similitude.
 - (c) Show that any Möbius transformation that is not a similitude may be written

$$h(z) = e + \frac{f}{z+g}$$

for some $e, f, g \in \hat{\mathbb{C}}, f \neq 0$.

- (d) Interpret the Möbius transformation $f(z) = i + \frac{1}{z-i}$ in terms of operations on the sphere.
- 2. (a) Give the definition of a just-touching IFS $\{X; w_n : n = 1, 2, ..., N\}$.
 - (b) Consider the IFS $\{[0, 1]; w_n(x) = \frac{n}{10} + \frac{1}{10}x : n = 0, 1, ..., 9\}$ and the associated code space using the symbols $\{0, 1, 2, ..., 9\}$. Show that the attractor of the IFS is [0, 1] and that it is just-touching. Identify the points with multiple addresses.
- - (b) Prove that for every non-empty compact set $C \subset \mathbb{R}^d$ and any $\epsilon > 0$ there is a finite set $F \subset C$ such that $h(F, C) < \epsilon$.
 - (c) Prove that an increasing sequence C_n of non-empty compact subsets of \mathbb{R}^d converges, in the Hausdorff distance, to the closure of the set $\bigcup_{k=0}^{\infty} C_k$ provided that the latter set is bounded.

MATHC356

- 4. (a) Give the definition of Hausdorff dimension $\dim_H C$ of a subset C of \mathbb{R}^d .
 - (b) Show that for any subset C of \mathbb{R}^d

$$\dim_H C \le \liminf_{n \to \infty} \left\{ \frac{\ln(\mathcal{N}_n(C))}{\ln(2^n)} \right\},\,$$

where $\mathcal{N}_n(C)$ denotes the number of boxes of side length $\frac{1}{2^n}$ that intersect C. (c) Show that for any countable subset C of \mathbb{R}^d , $\dim_H C = 0$.

5. Let $f_0, f_1 : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_0(x) = \frac{x}{9}, \quad f_1(x) = \frac{x+2}{3}.$$

- (a) Show that $\{f_0, f_1\}$ is a hyperbolic *IFS* and $0, 1 \in A \subset [0, 1]$, where A is the attractor of $\{f_0, f_1\}$.
- (b) Show that $\{f_0, f_1\}$ is a totally disconnected IFS.
- (c) Let Σ be the code space and $\phi : \Sigma \to A$ the coding map of $\{f_0, f_1\}$. Let $\Sigma_1 = \{\sigma = (\sigma_i)_1^\infty \in \Sigma : \sigma_1 = 1\}$ and show that

$$\phi(\Sigma_1) \subset \left[\frac{2}{27}, \frac{1}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$

(d) Give the definition of the fractal dimension $\dim_F C$ of a subset C of \mathbb{R}^d . Show that for the set A in part (a) that

$$\dim_F A = \frac{\ln 2}{\ln 3} - \frac{\ln(\sqrt{5} - 1)}{\ln 3}.$$

END OF PAPER

MATHC356