University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)M.Sci.

Mathematics M351: Financial Mathematics

COURSE CODE : MATHM351

UNIT VALUE : 0.50

DATE : 11-MAY-06

TIME : 10.00

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

NOTE: In the questions which follow the current price of an asset (or similar instrument) will often be denoted either by S_{t} or simply by S with the time subscript suppressed. Reference is made to the following definitions:

$$
\begin{gathered}
(x)^{+}=\max \{x, 0\} \\
N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left\{-\frac{t^{2}}{2}\right\} d t \\
n(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}, \\
d_{1}=\frac{\ln (S / K)+\left(r+\frac{1}{2} \sigma^{2}\right) t}{\sigma \sqrt{t}} \\
d_{2}=\frac{\ln (S / K)+\left(r-\frac{1}{2} \sigma^{2}\right) t}{\sigma \sqrt{t}}
\end{gathered}
$$

where K denotes the exercise price, r the riskless rate, σ the volatility and t is the time to expiry.
The Black-Scholes formula for pricing a European call is:

$$
C=S N\left(d_{1}\right)-K e^{-r t} N\left(d_{2}\right) .
$$

1. (a) Explain how covered interest-rate arbitrage can be used to value a forward $F(T)$ to time T on a foreign exchange rate S. Write a formula for the value of this forward using continuously-compounded interest rates.
(b) In the context of a one-period multi-state model of asset prices define what is meant by arbitrage opportunity and risk-neutral measure. State and prove the NoArbitrage Theorem. You may assume the Separating Hyperplane Theorem but this must be stated carefully.
(c) Explain the benefits to a trader of using risk-neutrality over expectation-based pricing.
2. Consider the following model, with $r=0$:

ω	$S(0)$	$S(1)$	$S(2)$
ω_{1}	10	14	18
ω_{2}	10	14	12
ω_{3}	10	8	12
ω_{4}	10	8	4

(a) Replicate the call option $X=(S(2)-7)^{+}$over the two periods and so find the fair price of the claim.
(b) Find all the one period risk-neutral probabilities and the corresponding probability on $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$. Confirm that $E_{\mathbf{Q}}[X]$ is the fair price.
(c) For the same model, find the value of the following so-called Asian option

$$
A=\left[\frac{1}{3}\{S(0)+S(1)+S(2)\}-7\right]^{+}
$$

(d) In the T-period binomial model, if the asset price is S at any time, the next period's price will be either $S U$ or $S D$. The interest rate per period r is positive and $D^{*}<1<U^{*}$, where the star denotes discounting.
(i) Describe the risk-neutral measure \mathbf{Q}.
(ii) A digital option pays one dollar at time $t=T$ if the asset price is above a fixed level K and is worthless otherwise. Using \mathbf{Q} show that the option value at time $t=0$ is equal to

$$
\frac{1}{(1+r)^{T}} \sum_{n \geqslant \hat{n}}\binom{T}{n} q_{U}^{n} q_{D}^{T-n}
$$

for some \hat{n} which you must find.
3. (a) Let Ω be a finite set, and let \mathbf{P} be a probability measure on Ω. Define what is meant by a filtration $P_{t}: t=0, \ldots, T$ on Ω. When is a process $S(t)$ said to be adapted to the filtration, and when is it a martingale? When is a process $H(t)$ previsible with respect to a filtration?
(b) Give a brief explanation of the idea behind dynamic programming as applied to the valuation of an American option. Use the method to value an American call option with exercise price $K=7$ dollars written on an asset where the asset prices in dollars are given below, the interest rate per period is zero, and a dividend of two dollars is paid between time 1 and expiry.

	$S(0, \omega)$	$S(1, \omega)$	$S(2, \omega)$
ω_{1}	10	14	16
ω_{2}	10	14	10
ω_{3}	10	8	10
ω_{4}	10	8	2

(c) Construct a hedging strategy for the American option.
4. (a) Let $f(S, t)$ be a function of two variables (continuously twice differentiable in S and once in t). State Itô's Formula for $d f(S(t), t)$, where $S(t)$ is an asset price obeying the stochastic equation

$$
d S=\mu d t+\sigma d W
$$

in which $W=W(t)$ is standard Brownian motion and μ, σ are continuous functions of S and t. Give a plausability argument in support of the formula.
(b) What form does Itô's Formula take when the function f is independent of time? Using this formula, explain how we can obtain a relationship between the stochastic integral and a standard integral.
(c) Find an expression for

$$
\int_{0}^{T} W(t) d W(t)
$$

(d) Now assume that S is a model for stock prices obeying the stochastic equation

$$
d S=\mu S d t+\sigma S d W
$$

What are the mean and variance of the risk-neutral probability of S given its value $S(t)$ at time t ?
5. (a) Let $V(S, t)$ denote the value at time $t \leq T$ of a European option when the price of the underlying asset is S. Assume that the asset price process $S(t)$ follows the stochastic equation

$$
d S=\mu S d t+\sigma S d W
$$

where $W=W(t)$ is a standard Brownian motion, μ, σ are constants and r is a constant riskless interest rate applicable throughout the life of the option.

Use Itô's Formula to derive the Black-Scholes equation satisfied by the function $V(S, t)$, namely

$$
\frac{\partial V}{\partial t}+r S \frac{\partial V}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}=r V
$$

(b) [Refer to the formulae at the start of the exam paper]

Show that $d_{2}^{2}=d_{1}^{2}-2 \log \left(S e^{r t} / K\right)$. Hence, or otherwise, show that the delta of a European call option is

$$
\frac{\partial C}{\partial S}=N\left(d_{1}\right)
$$

What does the buyer of a European call option need to do today to hedge the exposure to the underlying stock?

