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All questions may be attempted but only marks obtained on the best four  solutions will 
count. 
The use of an electronic calculator is not  permitted in this examination. 

NOTE: In the questions which follow the current price of an asset (or similar instru- 
ment) will often be denoted either by St or simply by S with the time subscript suppressed. 
Reference may be made to the following definitions: 

(x)+ = max{x,0}, 

i f_ ,  z2 (I)(u) = ~ ~o exp(---~-) dz, 

dl = ln(S/K) + (r + ½a2)(T - t) ,  

a x / T -  t 

d2 = ln(S/K) + (r - ½a2) (T -  t) ,  

a v e -  t 

where K denotes the exercise price, r the riskless rate per ,,nit time, a 2 the volatility per 
,,nit time and T is the maturity date so that  T t is the time to expiry. 

The Black-Scholes formula for pricing a European call is: 

S ¢ ( d l ) -  Ke-r(T-Och(d2). 
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1. (a) In the context of a one-period multi-state model of asset prices define what 
is meant by arbitrage opportunity and risk-neutral measure. State and prove the 
No-Arbitrage Theorem. 

(b) Consider the following model with r ---- 0, and two assets. 

1 6 7 
2 11 13 

Sn(1, w2) S~(1, w3) 
7 5 
9 9 

Show that  there is no risk-neutral probability measure for thi.~ model. Find an 
arbitrage opportunity. 

(c) An asset is currently priced at $30. At the end of a year it will be worth either 
$20 or $40. If the risk-free annual interest rate is r = 1/9, what is the value of a 
European call option that  expires in one year and has a strike price of $30? [Treat 
this as a single-period model.] 
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2. (a) Consider the  following model, with interest rate  r = 0: 

I"  II s(o) I I s(2) I 
wl 9 15 17 
w2 9 15 11 
w3 9 7 11 
w4 9 7 3 

Replicate the  call option X = (S(2) - 7) + over the two periods and so find the  fair 
price of the  claim at t ime t -- 0. 

(b) For the  model  in (a), find all the  one-period risk-neutral  probabili ty measures, 
and the corresponding probability measure on ~ = {wl, w2,w3, Wa}. Determine  the  
t ime 0 value of the Asian option 

Y = [S(O) H- S(1)  H- S(2) ]  - 9 

(c) In the T-period binomial model of asset dynamics for a single asset if the  asset 
price is S at any time, the next period's price will be ei ther  SU or SD.  The  interest  
rate per period r is positive and D* < 1 < U*, where the  star denotes  discounting. 

(i) Describe the  risk-neutral measure Q. 

Suppose that  the price of the asset is So at t ime t --- 0. Using Q deduce tha t  
in this model  the value of a European  call with expiry at t ime t ---- T, wri t ten  
on the asset and having strike price K is ei ther zero or (for some ~ which you 
should find) equal to 

1 T ~ ( T )  n - -q )T -n (U~DT-n  K ) , q  (1 
(1 + r )  T =- n 

where 
q = l + r - D  

U - D  
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. (a) Let f2 be  a finite set, and let IP be  a probabil i ty measure on ~ .  Define what  
is mean t  by a filtration {Pt : t --- O, ..., T}  on fl. When is a process S(t) said to 
be adapted t o  t he  filtration, and when  is it a martingale? When  is a process H(t) 
previsible w i t h  respect to a filtration? 

(b) Give a b r ie f  explanat ion of the idea behind  dynamical  programming as applied 
to the va lua t ion  of an Amer ican  option. Use the  method to value an Amer ican  call 
option wi th  exercise price K = 7 dollars wr i t t en  on an asset where the asset prices 
in dollars are  given below, the  interest  ra te  per period is zero, and a dividend of two 
dollars is payab le  at  t ime t -- 1.5. 

s tate  t----0 t - - -1  t = 2  
wl 9 15 15 
w2 9 15 9 
wa 9 7 9 
w4 9 7 3 

W h a t  is the  op t ima l  s topping t ime for this opt ion? How should the option be hedged 
if it were to  be  sold at t ime  0 ? 
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4. (a) Let f ( S , t )  be a function of two variables (continuously twice differentiable in 
S and once in t). State ItS's Formula for d f ( S ( t ) ,  t) ,  where S ( t )  is an asset price 
obeying the stochastic equation 

d S  = I~dt + a d W ,  

in which W = W ( t )  is standard Brownian motion and #, a are continuous functions 
of S and t. Give a plausibility arg~,ment in support of the formula. 

(b) Find an expression for 

o T W d W .  

Show that  

[Hint: In the first case, use S( t )  = W ( t )  and f ( S )  = 1 ~S ~. 
choose a different f.] 

f*w dw-- - w d , .  

For the second case, 
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5. (a) Let V(S,  t) denote the value at t ime t ~< T of a European option when the price 
of the underlying asset is S. Ass ,me that  the asset price process S(t) follows the 
stochastic equation 

dS = IzSdt + aSdW, (1) 

where W = W(t) is a standard Brownian motion, ~, a are constants and r is a 
constant riskless interest rate apphcable throughout the life of the option. 

Use It6's Formula to derive the Black-Scholes equation satisfied by the function 
V(S, t), namely 

1 2,~202V OV OV 
+ + = v. 

(b) Show tha t  the time-independent solutions of the equation in part (a) take the 
form A S  + B S  -~ for constants A, B for a suitably chosen positive 9' which you 
should specify. 

Suppose tha t  S _< K and r > 0. A perpetual dollar-or-nothing option with exercise 
price K can be exercised at any time, paying one dollar if the price of the asset is 
at least K and nothing otherwise. Show that  the value of such an option is S/K.  

[Hint: You will need to consider boundary conditions as S ---, 0 and at S = K. You 
should argue that the value tends to 0 as S ---* 0, and also justify your choice of 
value at S = K.] 
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