UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

1

Mathematics M351: Financial Mathematics

COURSE CODE	: MATHM	351
UNIT VALUE	: 0.50	
DATE	: 27-MA)	/-05
ТІМЕ	: 14.30	١
TIME ALLOWED	: 2 Hours	;

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

NOTE: In the questions which follow the current price of an asset (or similar instrument) will often be denoted either by S_t or simply by S with the time subscript suppressed. Reference may be made to the following definitions:

$$(x)^{+} = \max\{x, 0\},$$

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\{-\frac{z^{2}}{2}\} dz,$$

$$d_{1} = \frac{\ln(S/K) + (r + \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}},$$

$$d_{2} = \frac{\ln(S/K) + (r - \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}},$$

where K denotes the exercise price, r the riskless rate per unit time, σ^2 the volatility per unit time and T is the maturity date so that T - t is the time to expiry.

The Black-Scholes formula for pricing a European call is:

$$S\Phi(d_1) - Ke^{-r(T-t)}\Phi(d_2).$$

MATHM351

PLEASE TURN OVER

- 1. (a) In the context of a one-period multi-state model of asset prices define what is meant by *arbitrage opportunity* and *risk-neutral measure*. State and prove the No-Arbitrage Theorem.
 - (b) Consider the following model with r = 0, and two assets.

n	$S_n(0)$	$S_n(1,\omega_1)$	$S_n(1,\omega_2)$	$S_n(1,\omega_3)$
1	6	7	7	5
2	11	13	9	9

Show that there is no risk-neutral probability measure for this model. Find an arbitrage opportunity.

(c) An asset is currently priced at \$30. At the end of a year it will be worth either \$20 or \$40. If the risk-free annual interest rate is r = 1/9, what is the value of a European call option that expires in one year and has a strike price of \$30? [Treat this as a single-period model.]

MATHM351

CONTINUED

'n,

2. (a) Consider the following model, with interest rate r = 0:

ω	S(0)	S(1)	S(2)
ω_1	9	15	17
ω_2	9	15	11
ω_3	9	7	11
ω_4	9	7	3

Replicate the call option $X = (S(2) - 7)^+$ over the two periods and so find the fair price of the claim at time t = 0.

(b) For the model in (a), find all the one-period risk-neutral probability measures, and the corresponding probability measure on $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$. Determine the time 0 value of the Asian option

$$Y = \left(\frac{1}{3}[S(0) + S(1) + S(2)] - 9\right)^{+}.$$

(c) In the *T*-period binomial model of asset dynamics for a single asset if the asset price is *S* at any time, the next period's price will be either *SU* or *SD*. The interest rate per period r is positive and $D^* < 1 < U^*$, where the star denotes discounting.

- (i) Describe the risk-neutral measure \mathbb{Q} .
- (ii) Suppose that the price of the asset is S_0 at time t = 0. Using \mathbb{Q} deduce that in this model the value of a European call with expiry at time t = T, written on the asset and having strike price K is either zero or (for some \hat{n} which you should find) equal to

$$\frac{1}{(1+r)^T} \sum_{n=\hat{n}}^T \binom{T}{n} q^n (1-q)^{T-n} (U^n D^{T-n} - K),$$

where

$$q = \frac{1+r-D}{U-D}$$

PLEASE TURN OVER

MATHM351

3. (a) Let Ω be a finite set, and let \mathbb{P} be a probability measure on Ω . Define what is meant by a filtration $\{P_t : t = 0, ..., T\}$ on Ω . When is a process S(t) said to be *adapted* to the filtration, and when is it a *martingale*? When is a process H(t)*previsible* with respect to a filtration?

(b) Give a brief explanation of the idea behind dynamical programming as applied to the valuation of an American option. Use the method to value an American call option with exercise price K = 7 dollars written on an asset where the asset prices in dollars are given below, the interest rate per period is zero, and a dividend of two dollars is payable at time t = 1.5.

state	t = 0	t = 1	t=2
ω_1	9	15	15
ω_2	9	15	9
ω_3	9	7	9
ω_{A}	9	7	3

What is the optimal stopping time for this option? How should the option be hedged if it were to be sold at time 0?

MATHM351

CONTINUED

١J

4. (a) Let f(S,t) be a function of two variables (continuously twice differentiable in S and once in t). State Itô's Formula for df(S(t),t), where S(t) is an asset price obeying the stochastic equation

$$dS = \mu dt + \sigma dW,$$

in which W = W(t) is standard Brownian motion and μ, σ are continuous functions of S and t. Give a plausibility argument in support of the formula.

(b) Find an expression for

$$\int_0^T W dW.$$

Show that

$$\int_0^T W^2 dW = \frac{1}{3} (W(T)^3 - W(0)^3) - \int_0^T W dt.$$

[Hint: In the first case, use S(t) = W(t) and $f(S) = \frac{1}{2}S^2$. For the second case, choose a different f.]

MATHM351

PLEASE TURN OVER

5. (a) Let V(S, t) denote the value at time $t \leq T$ of a European option when the price of the underlying asset is S. Assume that the asset price process S(t) follows the stochastic equation

$$dS = \mu S dt + \sigma S dW, \tag{1}$$

₩ ↓ ↓ ↓

where W = W(t) is a standard Brownian motion, μ, σ are constants and r is a constant riskless interest rate applicable throughout the life of the option.

Use Itô's Formula to derive the Black-Scholes equation satisfied by the function V(S, t), namely

$$\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} = rV.$$

(b) Show that the time-independent solutions of the equation in part (a) take the form $AS + BS^{-\gamma}$ for constants A, B for a suitably chosen positive γ which you should specify.

Suppose that $S \leq K$ and r > 0. A perpetual dollar-or-nothing option with exercise price K can be exercised at any time, paying one dollar if the price of the asset is at least K and nothing otherwise. Show that the value of such an option is S/K.

[Hint: You will need to consider boundary conditions as $S \to 0$ and at S = K. You should argue that the value tends to 0 as $S \to 0$, and also justify your choice of value at S = K.]

MATHM351

END OF PAPER