UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

*

Mathematics M351: Financial Mathematics

COURSE CODE	:	MATHM351
UNIT VALUE	:	0.50
DATE	:	13-MAY-04
TIME	:	10.00
TIME ALLOWED	:	2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

NOTE: In the questions which follow the current price of an asset (or similar instrument) will often be denoted either by S_t or simply by S with the time subscript suppressed. Reference is made to the following definitions:

$$(x)^{+} = \max\{x, 0\},$$

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\{-\frac{z^{2}}{2}\} dz,$$

$$d_{1} = \frac{\ln(S/K) + (r + \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}},$$

$$d_{2} = \frac{\ln(S/K) + (r - \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}},$$

where K denotes the exercise price, r the riskless rate per unit time, σ^2 the volatility per unit time and T is the maturity date so that T - t is the time to expiry.

The Black-Scholes formula for pricing a European call is:

$$S\Phi(d_1) - Ke^{-r(T-t)}\Phi(d_2).$$

MATHM351

ÿ

PLEASE TURN OVER

1. (a) In the context of a one-period multi-state model of asset prices define what is meant by 'arbitrage opportunity' and 'risk neutral measure'. State and prove the No-Arbitrage Theorem.

(b) Suppose the Government charges a citizen tax equal to a fixed proportion θ of the part of his annual income which is in excess of a 'tax threshold' of K.

A citizen's annual income is assumed to be directly proportional to a market index I evaluated at the end of the year (so that if the end of year index value is I he earns βI in that year). Explain why the citizen may be regarded by the Government as a call option on the index value next year with strike price K/β . In what sense does this observation provide the Government the opportunity to issue a guaranteed debt equal to the call value?

The index is currently I_0 . In order to make High and Low projections regarding a citizien's tax, the Government makes projections about the next year's index using a two-state model and assumes the index value will be either Higher or Lower than currently with respective value I_H or I_L (so that $I_H > I_0(1+r) > I_L$, where r is the interest rate).

Find by how much they should discount their high tax projection to obtain a valuation of the citizen as a tax-revenue source. Remember to include discounting by rand to distinguish between the case where $\beta I_L < K$ and $\beta I_L > K$.

MATHM351

CONTINUED

Ť

2. (a) Assume a zero interest rate and suppose the following (binomial) model is used to describe the price of a risky asset at times t = 0,1,2.

state	t = 0	t = 1	t = 2
ω_1	4	8	16
ω_2	4	8	4
ω_3	4	2	4
ω_4	4	2	1

The call option $(S(2) - S(1))^+$ is payable at time t = 2 using as exercise price the asset price realised at time t = 1. Find the time t = 0 fair price of this option and determine how to replicate this claim. (This is an example of a 'forward-start, at the money' option.)

(b) In the *T*-period binomial model of asset dynamics for a single asset if the asset price is *S* at any time, the next period's price will be either *SU* or *SD*. The interest rate per period r is positive and $D^* < 1 < U^*$, where the star denotes discounting. Describe the risk-neutral measure Q.

(i) Suppose that the price of the asset at time t = 1 is observed to be S_1 . Using Q deduce that in this model the value at time t = 1 of a European call with expiry at time t = 1, written on the asset and having strike price 'at the money', i.e. $K = S_1$, is for some \hat{n} (which you should find) equal to

$$S_1 \sum_{n=\hat{n}}^{T'} \begin{pmatrix} T' \\ n \end{pmatrix} \hat{q}^n \left(1 - \hat{q}\right)^{T'-n} - \frac{S_1}{(1+r)^{T'}} \sum_{n=\hat{n}}^{T'} \begin{pmatrix} T' \\ n \end{pmatrix} q^n (1-q)^{T'-n}$$

where T' = T - 1, $q = \frac{1+r-D}{U-D}$ and $\hat{q} = qU/(1+r)$.

(ii) Suppose that at time t = 0 the asset price is S_0 . Find the value at time t = 0 of the 'forward-start' call option paying at time T the claim $(S(T) - S(1))^+$, where the strike price is determined by the asset price of time t = 1, i.e. after this price has been observed.

Hint: Use the one-period measure and the formula in part (i).

MATHM351

5

PLEASE TURN OVER

3. Define what is meant by: (a) a partition P_t of a finite sample space Ω ('set of states') corresponding to a time t = 0, 1, ..., T; (b) a filtration $\{P_t : t = 0, ..., T\}$. When is a process S(t) said to be adapted to the filtration, and when is it a martingale with respect to a measure P on Ω ? When is a process H(t) predictable with respect to a filtration?

If it is known for each t with $0 \le t < T$ that $E_P[S_n(t+1)|P_t] = S_n(t)$ deduce that $E_P[S_n(t+u)|P_t] = S_n(t)$ for each $t \ge 0$ and each u > 0 with $t+u \le T$.

Briefly explain the idea behind dynamical programming as applied to the valuation of an American option. Use the method to value an American call option with exercise price K = 5 dollars written on an asset where the asset prices in dollars are given below, the interest rate per period is zero, and a dividend of one dollar is payable at time t = 1.5.

state	t = 0	t = 1	t = 2
ω_1	7	10	10
ω_2	7	10	7
ω_3	7	6	7
ω_4	7	6	4

What is the optimal stopping time for this option? How should the option be hedged if it were to be sold at time 0?

MATHM351

CONTINUED

Y

5

4. (a) Let f(S,t) be a function of two variables (continuously twice differentiable in S and once in t). State Itô's Formula for $df(S_t, t)$, where S_t is an asset price obeying the stochastic equation

$$dS_t = adt + bdz_t,$$

in which z_t is standard Brownian motion and a, b are continuous functions of S and t. Give a plausibility argument in support of the formula.

(b) You are told that the option pricing equation for the fair price u of an option in terms of dimensionless asset and time variables has the form

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2} + (\rho - 1) \frac{\partial u}{\partial x} - \rho u.$$

Here x is the logarithm of asset price, τ is the time to expiry (measured by the dimensionless time parameter) and ρ is the riskless rate per unit of dimensionless time. [In the notation of page 1: $x = \log(S/K), \tau = \frac{1}{2}\sigma^2(T-t)$, and $\rho = 2r/\sigma^2$.]

(i) Use the substitution

$$u(x,\tau) = e^{-\rho\tau}w(x+\beta\tau,\tau)$$

for an appropriate choice of β to reduce the option pricing equation to the format

$$rac{\partial w}{\partial au} = rac{\partial^2 w}{\partial x^2}.$$

(ii) Show that the equation in (i) has the solution $w = V(x/\sqrt{\tau})$ where V(z) is a function of one variable and solves the equation

$$V'' + \frac{1}{2}zV'(z) = 0.$$

(iii) Solve the equation for V by integration and deduce that a solution of the option pricing equation is

$$u(x,\tau) = e^{-\rho\tau} [A\Phi([x+(\rho-1)\tau]/\sqrt{2\tau}) + B]$$

(Hint: V''/V' is the derivative of $\log V'(z)$.) Interpret this answer: what does it say about the dollar-or-nothing option?

MATHM351

PLEASE TURN OVER

ş.

5. (a) Let V(S,t) denote the value at time $t \leq T$ of a European option when the price of the underlying asset is S. Assume that the asset price process S_t follows the stochastic equation

$$dS_t = \mu S_t dt + \sigma S_t dz_t,\tag{1}$$

4

1110

where z_t is a standard Brownian motion, μ, σ are constants and r is a constant riskless interest rate applicable throughout the life of the option.

Use Itô's Formula to derive the Black-Scholes equation satisfied by the function V(S,t), namely

$$\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} = rV.$$

(b) Show that the time independent solutions of the equation in part (a) take the form $AS + BS^{-\gamma}$ for constants A, B for a suitably chosen positive γ which you should specify.

(c) A firm has assets whose value S_t at any time t obeys the equation (1). The firm is legally prevented from continuing its business as soon as the value of its assets falls to a pre-determined level S_B (when bankruptcy is said to occur).

The firm has contracted with its bank to make a cash payment continuously at a rate of C per unit time. In the absence of bankruptcy the present value of the contract to the bank is worth C/r where r is the assumed constant riskless deposit rate. If bankruptcy occurs the assets are sold at a cost αS_b where $0 < \alpha < 1$ and the bank receives the residue $(1 - \alpha)S_B$. The possibility that the firm may fail thus reduces the value of the contract below C/r to a value D(S) dependent on the current value S of firm assets.

Assume that $W = \frac{C}{r} - D$ satisfies

$$\frac{1}{2}\sigma^2 S^2 \frac{d^2 W}{dS^2} + rS \frac{dW}{dS} - rW = 0$$

and use part (b) to find the value of debt. (Hint: $D(S) \to C/r$ as $S \to \infty$.) Deduce that the risk-neutral probability of bankruptcy is

$$q_B = (S/S_B)^{-\rho}.$$

MATHM351

11

END OF PAPER