University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M351: Financial Mathematics

COURSE CODE : MATHM351

UNIT VALUE : 0.50

DATE : 13-MAY-04

TIME : 10.00

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

NOTE: In the questions which follow the current price of an asset (or similar instrument) will often be denoted either by S_{t} or simply by S with the time subscript suppressed. Reference is made to the following definitions:

$$
\begin{gathered}
(x)^{+}=\max \{x, 0\} \\
\Phi(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{u} \exp \left\{-\frac{z^{2}}{2}\right\} d z \\
d_{1}=\frac{\ln (S / K)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}, \\
d_{2}=\frac{\ln (S / K)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}},
\end{gathered}
$$

where K denotes the exercise price, r the riskless rate per unit time, σ^{2} the volatility per unit time and T is the maturity date so that $T-t$ is the time to expiry.

The Black-Scholes formula for pricing a European call is:

$$
S \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right) .
$$

1. (a) In the context of a one-period multi-state model of asset prices define what is meant by 'arbitrage opportunity' and 'risk neutral measure'. State and prove the No-Arbitrage Theorem.
(b) Suppose the Government charges a citizen tax equal to a fixed proportion θ of the part of his annual income which is in excess of a 'tax threshold' of K.
A citizen's annual income is assumed to be directly proportional to a market index I evaluated at the end of the year (so that if the end of year index value is I he earns βI in that year). Explain why the citizen may be regarded by the Government as a call option on the index value next year with strike price K / β. In what sense does this observation provide the Government the opportunity to issue a guaranteed debt equal to the call value?
The index is currently I_{0}. In order to make High and Low projections regarding a citizien's tax, the Government makes projections about the next year's index using a two-state model and assumes the index value will be either Higher or Lower than currently with respective value I_{H} or I_{L} (so that $I_{H}>I_{0}(1+r)>I_{L}$, where r is the interest rate).
Find by how much they should discount their high tax projection to obtain a valuation of the citizen as a tax-revenue source. Remember to include discounting by r and to distinguish between the case where $\beta I_{L}<K$ and $\beta I_{L}>K$.
2. (a) Assume a zero interest rate and suppose the following (binomial) model is used to describe the price of a risky asset at times $t=0,1,2$.

state	$t=0$	$t=1$	$t=2$
ω_{1}	4	8	16
ω_{2}	4	8	4
ω_{3}	4	2	4
ω_{4}	4	2	1

The call option $(S(2)-S(1))^{+}$is payable at time $t=2$ using as exercise price the asset price realised at time $t=1$. Find the time $t=0$ fair price of this option and determine how to replicate this claim. (This is an example of a 'forward-start, at the money' option.)
(b) In the T-period binomial model of asset dynamics for a single asset if the asset price is S at any time, the next period's price will be either $S U$ or $S D$. The interest rate per period r is positive and $D^{*}<1<U^{*}$, where the star denotes discounting. Describe the risk-neutral measure Q.
(i) Suppose that the price of the asset at time $t=1$ is observed to be S_{1}. Using Q deduce that in this model the value at time $t=1$ of a European call with expiry at time $t=1$, written on the asset and having strike price 'at the money', i.e. $K=S_{1}$, is for some \hat{n} (which you should find) equal to

$$
S_{1} \sum_{n=\hat{n}}^{T^{\prime}}\binom{T^{\prime}}{n} \hat{q}^{n}(1-\hat{q})^{T^{\prime}-n}-\frac{S_{1}}{(1+r)^{T^{\prime}}} \sum_{n=\hat{n}}^{T^{\prime}}\binom{T^{\prime}}{n} q^{n}(1-q)^{T^{\prime}-n}
$$

where $T^{\prime}=T-1, q=\frac{1+r-D}{U-D}$ and $\quad \hat{q}=q U /(1+r)$.
(ii) Suppose that at time $t=0$ the asset price is S_{0}. Find the value at time $t=0$ of the 'forward-start' call option paying at time T the claim $(S(T)-S(1))^{+}$, where the strike price is determined by the asset price of time $t=1$, i.e. after this price has been observed.
Hint: Use the one-period measure and the formula in part (i).
3. Define what is meant by: (a) a partition P_{t} of a finite sample space Ω ('set of states') corresponding to a time $t=0,1, \ldots, T$, (b) a filtration $\left\{P_{t}: t=0, \ldots, T\right\}$. When is a process $S(t)$ said to be adapted to the filtration, and when is it a martingale with respect to a measure P on Ω ? When is a process $H(t)$ predictable with respect to a filtration?

If it is known for each t with $0 \leqslant t<T$ that $E_{P}\left[S_{n}(t+1) \mid P_{t}\right]=S_{n}(t)$ deduce that $E_{P}\left[S_{n}(t+u) \mid P_{t}\right]=S_{n}(t)$ for each $t \geqslant 0$ and each $u>0$ with $t+u \leqslant T$.

Briefly explain the idea behind dynamical programming as applied to the valuation of an American option. Use the method to value an American call option with exercise price $K=5$ dollars written on an asset where the asset prices in dollars are given below, the interest rate per period is zero, and a dividend of one dollar is payable at time $t=1.5$.

state	$t=0$	$t=1$	$t=2$
ω_{1}	7	10	10
ω_{2}	7	10	7
ω_{3}	7	6	7
ω_{4}	7	6	4

What is the optimal stopping time for this option? How should the option be hedged if it were to be sold at time 0 ?
4. (a) Let $f(S, t)$ be a function of two variables (continuously twice differentiable in S and once in t). State Itô's Formula for $d f\left(S_{t}, t\right)$, where S_{t} is an asset price obeying the stochastic equation

$$
d S_{t}=a d t+b d z_{t}
$$

in which z_{t} is standard Brownian motion and a, b are continuous functions of S and t. Give a plausibility argument in support of the formula.
(b) You are told that the option pricing equation for the fair price u of an option in terms of dimensionless asset and time variables has the form

$$
\frac{\partial u}{\partial \tau}=\frac{\partial^{2} u}{\partial x^{2}}+(\rho-1) \frac{\partial u}{\partial x}-\rho u
$$

Here x is the logarithm of asset price, τ is the time to expiry (measured by the dimensionless time parameter) and ρ is the riskless rate per unit of dimensionless time. [In the notation of page 1: $x=\log (S / K), \tau=\frac{1}{2} \sigma^{2}(T-t)$, and $\rho=2 r / \sigma^{2}$.]
(i) Use the substitution

$$
u(x, \tau)=e^{-\rho \tau} w(x+\beta \tau, \tau)
$$

for an appropriate choice of β to reduce the option pricing equation to the format

$$
\frac{\partial w}{\partial \tau}=\frac{\partial^{2} w}{\partial x^{2}}
$$

(ii) Show that the equation in (i) has the solution $w=V(x / \sqrt{\tau})$ where $V(z)$ is a function of one variable and solves the equation

$$
V^{\prime \prime}+\frac{1}{2} z V^{\prime}(z)=0
$$

(iii) Solve the equation for V by integration and deduce that a solution of the option pricing equation is

$$
u(x, \tau)=e^{-\rho \tau}[A \Phi([x+(\rho-1) \tau] / \sqrt{2 \tau})+B]
$$

(Hint: $V^{\prime \prime} / V^{\prime}$ is the derivative of $\log V^{\prime}(z)$.) Interpret this answer: what does it say about the dollar-or-nothing option?
5. (a) Let $V(S, t)$ denote the value at time $t \leqslant T$ of a European option when the price of the underlying asset is S. Assume that the asset price process S_{t} follows the stochastic equation

$$
\begin{equation*}
d S_{t}=\mu S_{t} d t+\sigma S_{t} d z_{t} \tag{1}
\end{equation*}
$$

where z_{t} is a standard Brownian motion, μ, σ are constants and r is a constant riskless interest rate applicable throughout the life of the option.
Use Itô's Formula to derive the Black-Scholes equation satisfied by the function $V(S, t)$, namely

$$
\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}+\frac{\partial V}{\partial t}=r V
$$

(b) Show that the time independent solutions of the equation in part (a) take the form $A S+B S^{-\gamma}$ for constants A, B for a suitably chosen positive γ which you should specify.
(c) A firm has assets whose value S_{t} at any time t obeys the equation (1). The firm is legally prevented from continuing its business as soon as the value of its assets falls to a pre-determined level S_{B} (when bankruptcy is said to occur).
The firm has contracted with its bank to make a cash payment continuously at a rate of C per unit time. In the absence of bankruptcy the present value of the contract to the bank is worth C / r where r is the assumed constant riskless deposit rate. If bankruptcy occurs the assets are sold at a cost αS_{b} where $0<\alpha<1$ and the bank receives the residue $(1-\alpha) S_{B}$. The possibility that the firm may fail thus reduces the value of the contract below C / r to a value $D(S)$ dependent on the current value S of firm assets.
Assume that $W=\frac{C}{r}-D$ satisfies

$$
\frac{1}{2} \sigma^{2} S^{2} \frac{d^{2} W}{d S^{2}}+r S \frac{d W}{d S}-r W=0
$$

and use part (b) to find the value of debt. (Hint: $D(S) \rightarrow C / r$ as $S \rightarrow \infty$.) Deduce that the risk-neutral probability of bankruptcy is

$$
q_{B}=\left(S / S_{B}\right)^{-\rho} .
$$

