UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sc. M.Sci.

4

7

Mathematics M351: Financial Mathematics

COURSE CODE	: MATHM351
UNIT VALUE	: 0.50
DATE	: 16-MAY-02
TIME	: 14.30
TIME ALLOWED	: 2 hours

02-C0958-3-50

© 2002 University of London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

NOTE: In the questions which follow the current price of an asset (or similar instrument) will often be denoted either by S_t or simply by S with the time subscript suppressed. Reference is made to the following definitions:

$$(x)^{+} = \max\{x, 0\},$$

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\{-\frac{z^{2}}{2}\} dz,$$

$$d_{1} = \frac{\ln(S/K) + (r + \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}},$$

$$d_{2} = \frac{\ln(S/K) + (r - \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}}.$$

The Black-Scholes formula for pricing a European call is:

$$S\Phi(d_1) - Ke^{-r(T-t)}\Phi(d_2).$$

1. (a) In the context of a one-period multi-state model of asset prices define what is meant by 'arbitrage opportunity' and 'risk neutral measure'. State and prove the No-Arbitrage Theorem.

(b) The price of an asset is initially unity, i.e. S(0) = 1. The price at time 1 may be one of three values u, v, w, where 0 < u < v < w. Write down all the risk neutral measures when the interest rate r satisfies u < 1 + r < v and when it satisfies v < 1 + r < w. What happens when 1 + r > w?

(c) A certain car insurance, which pays any level of claim in full, is sold for £500. An alternative policy is sold for £40 less with the restriction that the client meets the first £200 of any claim.

- (i) Examine this market for arbitrage opportunities when modelling the sample space of claims with two states: no claim and a single possible claim at £5000.
- (ii) What happens if the sample space is extended to contain a further possible claim of £2000.

MATHM351

2. (a) Assuming a zero interest rate and using the following model for the price of a risky asset at times t = 0 and t = 1

ω	$S(0,\omega)$	$S(1,\omega)$	$S(2,\omega)$
ω_1	6	9	10
ω_2	6	9	7
ω_3	6	5	7
ω_4	6	5	4

find the value of the following look-back option

$$X(\omega) = \max\{S(t,\omega) - 8 : t = 0, 1, 2\}.$$

(b) In the *T*-period binomial model of asset dynamics for a single asset, if the asset price is *S* at any time, the next period's price will be either *SU* or *SD*. The initial price of the asset is unity, the interest rate per period *r* is positive and $D^* < 1 < U^*$, (where the star denotes discounting). Describe the risk-neutral measure *Q*.

(i) Using Q find the value P of a European *put* written on the asset and having strike price K.

(ii) Recall that the value of a European *call* with strike price K either is zero or, for some \widehat{m} (which you may need to identify) is equal to

$$C = \sum_{n=\widehat{m}}^{T} {\binom{T}{n}} \hat{q}^{n} (1-\hat{q})^{T-n} - \frac{K}{(1+r)^{T}} \sum_{n=\widehat{m}}^{T} {\binom{T}{n}} q^{n} (1-q)^{T-n},$$

where $q = \frac{1+r-D}{U-D}$, $\hat{q} = qU/(1+r)$.

Using your formula for P from (i), verify the parity relation

$$P - C = K^* - 1.$$

MATHM351

CONTINUED

¢

- 3. Define what is meant by
 - (a) a partition P_t of a finite sample space Ω ('set of states') corresponding to a time t = 0, 1, ..., T,
 - (b) a filtration $\{P_t : t = 0, ..., T\}$.

When is a process S_t said to be *adapted* to the filtration, and when is it a *martingale* with respect to a measure P on Ω ?

If it is known for each t with $0 \le t < T$ that $E_P[S_n(t+1)|P_t] = S_n(t)$, deduce that $E_P[S_n(t+u)|P_t] = S_n(t)$ for each $t \ge 0$ and each u > 0 with $t + u \le T$.

Briefly explain the idea behind dynamical programming as applied to the valuation of an American option. Use the method to value an American *call* option with exercise price K = 5 written on an asset where the asset prices in dollars are given below, the interest rate per period is zero, and a dividend of one dollar is payable at time t = 1.5.

ω	$S(0,\omega)$	$S(1,\omega)$	$S(2,\omega)$
ω_1	5	8	9
ω_2	5	8	6
ω_3	5	4	6
ω_4	5	4	2

Show that it is sometimes optimal to exercise at time t = 1.

How should the option be hedged if it were to be sold at time 0.

MATHM351

4. Let f(S,t) be a function of two variables (continuously twice differentiable in S and once in t). State Itô's Formula for $df(S_t, t)$, where S_t is an asset price obeying the stochastic equation

$$dS_t = adt + bdz_t,$$

in which z_t is standard Brownian motion and a, b are continuous functions of S and t. Give a plausibility argument in support of the formula.

Use the formula to show that

$$\int_0^T z_t dz_t = \frac{1}{2} (z_T^2 - z_0^2) - \frac{1}{2} T.$$

What are the mean and variance of the risk-neutral probability of the asset price S_T at time T when $a = \mu S$ and $b = \sigma S$ with μ, σ constant?

Use this probability to evaluate the fair price at time t < T of a *put* option on the asset with exercise price K and maturing at time T, by expressing the conditional expectation $E_t[(K - S_T)^+]$ suitably discounted in terms of the cumulative normal distribution function $\Phi(u)$ defined at the start of this examination paper.

5. (a) Let V(S,t) denote the value at time $t \leq T$ of a European option when the price of the underlying asset is S. Assume that the asset price process S_t follows the stochastic equation

$$dS_t = \mu S_t dt + \sigma S_t dz_t,$$

where z_t is a standard Brownian motion, μ, σ are constants and r is a constant riskless interest rate applicable throughout the life of the option. Assume further that the asset pays a dividend continuously at rate q of value $qS_t\Delta t$ in a period of length Δt .

Use Itô's Formula to derive the Black-Scholes equation satisfied by the function V(S,t), namely

$$\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + (r-q)S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} = rV.$$

(b) Show that the time independent solutions of the equation in part (a) take the form $AS^{\alpha} + BS^{-\beta}$ with A, B constant, for some appropriate positive α and β which you should specify.

Use this result to deduce that when $q \ge 0$ a perpetual dollar-or-nothing option with exercise price K has value $(S/K)^{\alpha}$ for $S \le K$.

MATHM351

END OF PAPER