University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M324: Elliptic Curves

COURSE CODE : MATHM324

UNIT VALUE : 0.50

DATE : 09-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Find all rational solutions to the equation

$$
X^{2}+Y^{2}=1
$$

(b) Consider the diophantine equation

$$
X^{2}+Y^{2}=Z^{2}
$$

(i). Let (x, y, z) be an integer solution. Show that there is a solution ($x^{\prime}, y^{\prime}, z^{\prime}$) with $x^{\prime}, y^{\prime}, z^{\prime}$ pairwise coprime.
(ii). Let (x, y, z) be an integer solution with x, y, z pairwise coprime. Show, possibly after permuting x and y, that one can assume that x is odd and y is even.
(iii). Using the solution to (a) above show that there exist two coprime integers m and n and an integer λ such that

$$
\lambda z=n^{2}+m^{2} \quad \lambda x=n^{2}-m^{2} \quad \lambda y=2 n m
$$

Show that λ is 1 or 2 .
(iv). Show that $\lambda=1$.
(c) Show that the equation $X^{2}+Y^{2}=3 Z^{2}$ has no integer solutions.
2. (a) Let C_{1} and C_{2} be two projective curves of degrees d_{1} and d_{2} given by homogeneous polynomials f_{1} and f_{2} respectively. State Bezout's theorem for C_{1} and C_{2}.
(b) Let C be the algebraic curve in \mathbb{P}^{2} defined by the polynomial

$$
F(X, Y, Z)=X^{3}+Y^{3}-2 X^{2} Z+Y^{2} Z+X Z^{2}
$$

(i) Find the singular points of C, the multiplicities of C at these points and the equations of the tangent lines at these points.
(ii) Let L_{1} be the line in \mathbb{A}^{2} defined by $X=0$, let L_{2} be the line $Y=0$ and let Let P be the point $(0,0)$. Compute $I_{P}\left(C, L_{1}\right)$ and $I_{P}\left(C, L_{2}\right)$.
3. (a) Say what is meant by Weierstrass normal form of an elliptic curve.
(b) Let P and Q be points on an elliptic curve C with origin O. Explain the geometric construction of $P+Q$.
Given the elliptic curve $y^{2}=x^{3}+17, O$ the point at infinity and rational points $P_{1}=(2,5)$ and $P_{2}=(4,9)$. Calculate the coordinates of $P_{1} * P_{2}$ and of $P_{1}+P_{2}$.
(c) Let C have the equation $y^{2} z=x^{3}+a x^{2} z+b x z^{2}+c z^{3}$ and $O=[0: 1: 0]$. Show that 0 is a point of inflection. Let $P=(x, y)$ be a point on C. Show that $-P=(x,-y)$ and describe the subgroup $C[2]$ of points P such that $2 P=0$.
4. (a) State the Nagell-Lutz theorem.
(b) Let $y^{2}=f(x)$ where $f(x)=x^{3}+a x^{2}+b x+c$ be an equation of the elliptic curve C. Let $P=\left(x_{0}, y_{0}\right)$ be a point on C such that $y_{0} \neq 0$. Express the coordinates of $2 P$ in terms of $\lambda=\frac{f^{\prime}\left(x_{0}\right)}{2 y_{0}}, x_{0}$ and y_{0}.
(c) Let $P=(x, y)$ be a point on C such that both P and $2 P$ have integer coordinates and $y \neq 0$. Let D be the discriminant of f. Show that y divides D. (You can use without proof the fact that there exist two polynomials r and s with integer coefficients such that $\left.D=r(x) f(x)+s(x) f^{\prime}(x)\right)$.
(d) Let $P=(-2,3)$ be a point on the elliptic curve the curve $y^{2}=x^{3}+17$. By calculating the coordinates of $2 P, 4 P, \ldots$ or otherwise, show that P is not a torsion point.
5. (a) Define the height H of a rational point on an elliptic curve. Show that for every real $M \geqslant 0$, the set of rational points P such that $H(P) \leqslant M$ is finite.
(b) Define the rank of an elliptic curve. State the Mordell-Weil theorem.
(c) Consider the elliptic curve $C: y^{2}=x^{3}-x$.
(i) Calculate the rank of C.
(ii) The torsion subgroup $C^{\text {tors }}(\mathbb{Q})$ (You may assume that the discriminant of $x^{3}-x$ is 4 and you may use the stronger form of Nagell-Lutz theorem)

