UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٦

J

Mathematics M324: Elliptic Curves

COURSE CODE	: MATHM324
UNIT VALUE	: 0.50
DATE	: 09-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

06-C1057-3-30 © 2006 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. (a) Find all *rational* solutions to the equation

$$X^2 + Y^2 = 1$$

(b) Consider the diophantine equation

$$X^2 + Y^2 = Z^2$$

- (i). Let (x, y, z) be an integer solution. Show that there is a solution (x', y', z') with x', y', z' pairwise coprime.
- (ii). Let (x, y, z) be an integer solution with x, y, z pairwise coprime. Show, possibly after permuting x and y, that one can assume that x is odd and y is even.
- (iii). Using the solution to (a) above show that there exist two coprime integers m and n and an integer λ such that

$$\lambda z = n^2 + m^2 \quad \lambda x = n^2 - m^2 \quad \lambda y = 2nm.$$

Show that λ is 1 or 2.

- (iv). Show that $\lambda = 1$.
- (c) Show that the equation $X^2 + Y^2 = 3Z^2$ has no integer solutions.
- 2. (a) Let C_1 and C_2 be two projective curves of degrees d_1 and d_2 given by homogeneous polynomials f_1 and f_2 respectively. State Bezout's theorem for C_1 and C_2 .
 - (b) Let C be the algebraic curve in \mathbb{P}^2 defined by the polynomial

$$F(X, Y, Z) = X^{3} + Y^{3} - 2X^{2}Z + Y^{2}Z + XZ^{2}$$

- (i) Find the singular points of C, the multiplicities of C at these points and the equations of the tangent lines at these points.
- (ii) Let L_1 be the line in \mathbb{A}^2 defined by X = 0, let L_2 be the line Y = 0 and let Let P be the point (0,0). Compute $I_P(C, L_1)$ and $I_P(C, L_2)$.

PLEASE TURN OVER

M324

- 3. (a) Say what is meant by Weierstrass normal form of an elliptic curve.
 - (b) Let P and Q be points on an elliptic curve C with origin O. Explain the geometric construction of P + Q.
 Given the elliptic curve y² = x³ + 17, O the point at infinity and rational points P₁ = (2, 5) and P₂ = (4, 9). Calculate the coordinates of P₁ * P₂ and of P₁ + P₂.
 - (c) Let C have the equation $y^2 z = x^3 + ax^2 z + bxz^2 + cz^3$ and O = [0:1:0]. Show that 0 is a point of inflection. Let P = (x, y) be a point on C. Show that -P = (x, -y) and describe the subgroup C[2] of points P such that 2P = 0.
- 4. (a) State the Nagell-Lutz theorem.
 - (b) Let $y^2 = f(x)$ where $f(x) = x^3 + ax^2 + bx + c$ be an equation of the elliptic curve C. Let $P = (x_0, y_0)$ be a point on C such that $y_0 \neq 0$. Express the coordinates of 2P in terms of $\lambda = \frac{f'(x_0)}{2y_0}$, x_0 and y_0 .
 - (c) Let P = (x, y) be a point on C such that both P and 2P have integer coordinates and $y \neq 0$. Let D be the discriminant of f. Show that y divides D. (You can use without proof the fact that there exist two polynomials r and s with integer coefficients such that D = r(x)f(x) + s(x)f'(x)).
 - (d) Let P = (-2, 3) be a point on the elliptic curve the curve $y^2 = x^3 + 17$. By calculating the coordinates of $2P, 4P, \ldots$ or otherwise, show that P is not a torsion point.
- 5. (a) Define the height H of a rational point on an elliptic curve. Show that for every real $M \ge 0$, the set of rational points P such that $H(P) \le M$ is finite.
 - (b) Define the rank of an elliptic curve. State the Mordell-Weil theorem.
 - (c) Consider the elliptic curve $C: y^2 = x^3 x$.
 - (i) Calculate the rank of C.
 - (ii) The torsion subgroup $C^{\text{tors}}(\mathbb{Q})$ (You may assume that the discriminant of $x^3 x$ is 4 and you may use the stronger form of Nagell-Lutz theorem)