UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

,

Mathematics M324: Elliptic Curves

COURSE CODE	:	MATHM324
UNIT VALUE	:	0.50
DATE	:	24-MAY-04
TIME	:	14.30
TIME ALLOWED	:	2 Hours

04-C0971-3-30 © 2004 University College London

TURN OVER

t

|

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) For a point P in the affine plane $\mathbb{A}^2(\mathbb{C})$, define
 - (i) the local ring $\mathbb{C}[x,y]_P$;
 - (ii) the intersection number $I(C_1, C_2, P)$ of two curves at P.
 - (b) For every complex number λ , calculate the intersection number of the following two curves at the point (0,0):

$$C_1: y^2 = x^4 + x^2, \qquad C_2: y = x^2 + \lambda x.$$

(c) Find all rational points on the following conic:

$$C: x^2 - 3y^2 = 1.$$

2. (a) Define the term elliptic curve over a field k.

For an elliptic curve C over k, <u>not</u> necessarily in Weierstrass form, define with the aid of a diagram the group law on the curve. Explain the role of Bezout's theorem in this construction.

(b) Find a Weierstrass form of the following elliptic curve over \mathbb{Q} , starting from the given point:

$$C: u^3 + v^3 + w^3 = 0, \quad \mathcal{O} = (1:1:1).$$

MATHM324

PLEASE TURN OVER

- 3. (a) Define the term *elliptic function*.
 - (b) Let f be a non-zero elliptic function with respect to a lattice L and let \mathcal{P} be a fundamental cell for L. Prove the following:
 - (i) The sum of the residues of f at points of \mathcal{P} is 0;
 - (ii) The number of zeros of f in \mathcal{P} is equal to the number of poles (taking into account the multiplicity).
 - (c) Give a formula for a group isomorphism

$$\Phi: \mathbb{C}/L \to C(\mathbb{C}),$$

where C is the curve defined by $y^2 = x^3 + g_4(L)x + g_6(L)$. (Do NOT prove that Φ is an isomorphism).

Prove that Φ is bijective.

4. (a) State the Nagell-Lutz Theorem.

Describe an algorithm for calculating the group of rational torsion points on an elliptic curve over \mathbb{Q} .

Let P be a point of an elliptic curve C in Weierstrass form. Show that 3P = 0 if, and only if, P is a point of inflection.

(b) Let C be the elliptic curve with discriminant -3^7 , defined over \mathbb{Q} by the equation

 $y^2 = x^3 + 9.$

Find a point of order 3 on $C(\mathbb{Q})$. Calculate the group $\overline{C}(\mathbb{F}_5)$. Hence determine $C(\mathbb{Q})^{tors}$.

5. (a) State Mordell's Theorem.

Define the *rank* of an elliptic curve over \mathbb{Q} .

(b) Calculate the rank of the following elliptic curve:

$$y^2 = x^3 + 3x.$$

MATHM324

END OF PAPER

ž