University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M324: Elliptic Curves

COURSE CODE : MATHM324

UNIT VALUE : 0.50

DATE : 24-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) For a point P in the affine plane $\mathbb{A}^{2}(\mathbb{C})$, define
(i) the local ring $\mathbb{C}[x, y]_{P}$;
(ii) the intersection number $I\left(C_{1}, C_{2}, P\right)$ of two curves at P.
(b) For every complex number λ, calculate the intersection number of the following two curves at the point $(0,0)$:

$$
C_{1}: y^{2}=x^{4}+x^{2}, \quad C_{2}: y=x^{2}+\lambda x .
$$

(c) Find all rational points on the following conic:

$$
C: x^{2}-3 y^{2}=1
$$

2. (a) Define the term elliptic curve over a field k.

For an elliptic curve C over k, not necessarily in Weierstrass form, define with the aid of a diagram the group law on the curve. Explain the role of Bezout's theorem in this construction.
(b) Find a Weierstrass form of the following elliptic curve over \mathbb{Q}, starting from the given point:

$$
C: u^{3}+v^{3}+w^{3}=0, \quad \mathcal{O}=(1: 1: 1)
$$

3. (a) Define the term elliptic function.
(b) Let f be a non-zero elliptic function with respect to a lattice L and let \mathcal{P} be a fundamental cell for L. Prove the following:
(i) The sum of the residues of f at points of \mathcal{P} is 0 ;
(ii) The number of zeros of f in \mathcal{P} is equal to the number of poles (taking into account the multiplicity).
(c) Give a formula for a group isomorphism

$$
\Phi: \mathbb{C} / L \rightarrow C(\mathbb{C})
$$

where C is the curve defined by $y^{2}=x^{3}+g_{4}(L) x+g_{6}(L)$. (Do NOT prove that Φ is an isomorphism).
Prove that Φ is bijective.
4. (a) State the Nagell-Lutz Theorem.

Describe an algorithm for calculating the group of rational torsion points on an elliptic curve over \mathbb{Q}.
Let P be a point of an elliptic curve C in Weierstrass form. Show that $3 P=0$ if, and only if, P is a point of inflection.
(b) Let C be the elliptic curve with discriminant -3^{7}, defined over \mathbb{Q} by the equation

$$
y^{2}=x^{3}+9
$$

Find a point of order 3 on $C(\mathbb{Q})$.
Calculate the group $\bar{C}\left(\mathbb{F}_{5}\right)$.
Hence determine $C(\mathbb{Q})^{\text {tors }}$.
5. (a) State Mordell's Theorem.

Define the rank of an elliptic curve over \mathbb{Q}.
(b) Calculate the rank of the following elliptic curve:

$$
y^{2}=x^{3}+3 x
$$

