UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.A. B.Eng. B.Sc.

Mathematics A1B: Elementary Mathematics 2

COURSE CODE : MATHA01B

UNIT VALUE : 0.50

DATE : 18-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is permitted in this examination.

1. Find the stationary points of the function $y=x^{3} / 3+x^{2} / 2-2 x+1$ and describe their nature. What is the gradient of the tangent to the graph of this function when it cuts the y-axis? Sketch the curve.
2. (a) Define the function $\sin ^{-1} x$, sketch its graph and find its derivative with respect to x.
(b) Find $\int \sin ^{-1} x d x$
(c) Find $\int \log x d x$.
3. Find the following:
(a) $\int \frac{x^{3}}{x^{4}+42} d x$,
(b) $\int x e^{x} d x$,
(c) $\int x^{2} \cos x d x$,
4. (a) Using the formula for calculating a solid of revolution, find the volume of a sphere of radius r.
(b) Show that the improper integral $\int_{0}^{\infty} \sin x e^{-x} d x$ is convergent and find its value.
5. Let $\mathbf{u}=(1,2,3), \mathbf{v}=(2,3,-4)$.
(a) Find $\mathbf{u} \cdot \mathbf{v}$ (the scalar product).
(b) Find $\mathbf{u} \times \mathbf{v}$ (the vector product).
(c) If θ is the angle between \mathbf{u} and \mathbf{v}, find $\cos \theta$.
6. (a) Use the Trapezium rule with 5 divisions to find an approximate value for the integral $\int_{0}^{1} x^{2} d x$. Find the true value of the integral and hence find the error of the approximate answer.
(b) Suppose a cubical box of side x is measured to an accuracy of $r \%$, where r is a small number. What percentage error would you expect when you calculate its volume?
7. Solve the following differential equations.
(a) $\cos ^{2} x \frac{d y}{d x}=y^{2}$.
(b) $\frac{d y}{d x}=\frac{e^{-x}}{y}$.
