UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.A. B.Eng. M.Sci.

Mathematics A1B: Elementary Mathematics 2

COURSE CODE	: MATHA01B
UNIT VALUE	: 0.50
DATE	: 28-MAY-03
TIME	: 14.30
TIME ALLOWED	: 2 Hours

03-C0897-3-40 © 2003 University College London

ł

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is permitted in this examination.

- 1. (a) Find the stationary points of the function $y = x^2 e^{-x}$ and determine their nature.
 - (b) Sketch the graph of $\sin x$. Explain how $\sin^{-1}(x)$ (= $\arcsin(x)$) is defined, and determine the derivative of $\sin^{-1}(x)$ from your definition.
- 2. Find the following:
 - (i) $\int \frac{x}{x^2+1} dx$,
 - (ii) $\int x \sin(2x) dx$,
 - (iii) $\int \frac{1}{x} (\log x)^2 dx$.
- 3. (a) Find the volume of the solid of rotation obtained by rotating the curve $y = \sqrt{x(1-x)}$ between x = 0 and x = 1 about the x-axis.
 - (b) Find mean and root mean square of $\sin x$ between x = 0 and $x = 2\pi$.
- 4. Find $\int \sin^{-1} x \, dx$.
- 5. (a) Let $\mathbf{u} = (1,1,0)$, $\mathbf{v} = (1,2,1)$. Find the magnitude of \mathbf{u} and of \mathbf{v} , and find the angle between \mathbf{u} and \mathbf{v} .
 - (b) A body at the origin is acted on by a force of magnitude 3 in the direction of the point (1,1,0), and a force of magnitude 5 in the direction of the point (0,3,4). Find the unit vector in the direction in which the body starts to move.
 - (c) Find the equation of the plane through the points (1,2,2), (4,0,1) and (-1,1,5).

MATHA01B

PLEASE TURN OVER

6. (a) The quantities p and x are known to be related by an equation of the form $p = ax^n$. By drawing a suitable graph, find approximate values of a and n, if experimental values of p and x are as follows:

- (b) If $f = a^2 b^{-3} c^{1/2}$, and the values of a, b and c are correct to an accuracy of $\pm 0.5\%, \pm 0.2\%$ and 0.1% (respectively), what is, approximately, the corresponding percentage accuracy of f?
- (c) Give a better approximation than 1 for $(1 + 10^{-20})^{-3}$.
- 7. (a) Solve the differential equation

$$rac{dy}{dx} = rac{(y^2 - 1)}{(x^2 - 1)},$$

given that y = 2 when x = 2.

(b) Solve the differential equation

$$\frac{d^2y}{dx^2} + 16y = 0,$$

given that y = 1 and $\frac{dy}{dx} = 4$ when x = 0. Find the amplitude of y.

MATHA01B

END OF PAPER

ł

ž

٢