University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.A. B.Eng. B.Sc. M.Sci.

Mathematics A1A: Elementary Mathematics 1

COURSE CODE : MATHAOIA

UNIT VALUE : 0.50

DATE : 17-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is permitted in this examination.

1. Simplify the following:
(a) $\frac{(x-3 y)\left(x^{2}-4 x y\right)\left(x y-y^{2}\right)(x+2 y)}{x\left(y x^{2}-6 y^{3}-x y^{2}\right)}$,
(b) $(x+y)^{3}-(x-y)^{3}+y(x+y)^{2}-x(x+y)^{2}$,
(c) $\left(x^{\frac{3}{2}} y \sqrt{z}\right)^{3} \frac{y^{5}}{\sqrt[4]{z^{12}}}$.
2. Sketch the curve $y=x^{2}-3 x+2$ giving the coordinates of the points where it crosses the x-axis.

The line L_{1} passes through the points $(2,-2)$ and $(3,-4)$. Find the equation of the line L_{1} and the coordinates of the points at which it cuts the curve.
A second line L_{2} is perpendicular to L_{1} and passes through the point $(1,1)$. Find the equation of the line L_{2} and add the lines L_{1}, L_{2} to your sketch. [There is no need to find the coordinates of the points where L_{2} cuts the curve.]
3. Write down the formulae for $\sin (A+B)$ and $\sin (A-B)$ in terms of $\sin A, \sin B, \cos A$, and $\cos B$. Apply one formula to

$$
\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right)
$$

to deduce that

$$
\sin \frac{7 \pi}{12}=\frac{1+\sqrt{3}}{2 \sqrt{2}} .
$$

Find a similar result for $\sin \frac{\pi}{12}$.
Write down the exact values of $\sin \frac{5 \pi}{12}, \sin \frac{13 \pi}{12}$ and $\cos \frac{\pi}{12}$.
4. Differentiate the following with respect to x :
(a) $\frac{x^{2}+1}{x+1}$,
(b) $x^{\frac{1}{2}} e^{x^{2}}$,
(c) $\frac{1}{x^{3}}+\ln \left(3 x^{3}\right)$,
(d) $\sin (x \sin x)$.
5. (a) Two circles, centres A and B and each of radius 5 cm ., have their centres 8 cm .apart and intersect along the line $P Q$. Find the length $P Q$. Denote the angle $P A B$ by α and show that $\cos \alpha=4 / 5$.
Assuming the formula for the area of a circle, show that the area of the sector $P A Q$ of the circle centre A is $(25 \alpha) \mathrm{cm}^{2}$. Find, as a function of α, the area common to the two circles.
(b) Sketch the curve $y=1 / x^{2}$ and find the equation of the tangent where $x=1$.
6. Write down the formula for the MacLaurin expansion of $f(x)$ in powers of x. Apply it to the function $(1+x)^{n}$, where n is a positive integer, to show that

$$
(1+x)^{n}=\sum_{r=0}^{n} \frac{n!}{r!(n-r)!} x^{r}
$$

Find
(i) the coefficient of x^{8} in $\left(1+x^{2}\right)^{14}$,
(ii) the coefficient of x^{-7} in $\left(2-\frac{3}{x}\right)^{10}$.
7. (a) Show that the equation $z^{2}+2 z+3=0$ has no real roots.

Find the roots z_{1}, z_{2} and show that they are complex conjugates.
Show that $z_{1}+z_{2}=-2$ and that $z_{1} z_{2}=3$.
Choose either root to be z_{1} and write z_{1} / z_{2} in the form $a+\mathrm{i} b$ where a, b are real numbers.
(b) Write $1+\mathrm{i}$ in the form $r e^{\mathrm{i} \theta}$ and hence write $(1+\mathrm{i})^{23}$ in the form $c+\mathrm{i} d$ where c, d are real numbers.

