UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.A. B.Eng. B.Sc. M.Sci.

Mathematics A1A: Elementary Mathematics 1

COURSE CODE	:	MATHA01A
UNIT VALUE	:	0.50
DATE	:	12-MAY-03
TIME	:	14.30
TIME ALLOWED	:	2 Hours

03-C0896-3-50 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best five solutions will count. The use of an electronic calculator is permitted in this examination.

- 1. Simplify the following expressions:
 - (a) $(x-y)(x^3 + yx^2 + y^2x + y^3 + x + y),$ (b) $\left(\frac{x^3\sqrt[3]{z}}{y}\right)^2 \left(\frac{1}{\sqrt{z}}y^{10}\right),$
 - (c) $(a+b+c)^2 (a-b+c)^2$.
- 2. (a) Find the points where the curve $y = x^2 9x + 14$ meets the x-axis.
 - (b) Find the equation of a straight line through the points (1, 13) and (-1, 7) and find the shortest distance of this line to the origin.
- 3. (a) Define the trigonometric functions $\sin \theta$, $\cos \theta$, $\tan \theta$ and $\cot \theta$ for a general angle θ . Assuming the formula $\sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi$ show that $\sin(\theta + \pi/2) = \cos \theta$ and $\cos(\theta + \pi/2) = -\sin \theta$. Deduce the formula for expanding $\cos(\theta + \phi)$ in terms of the functions $\cos \theta$, $\cos \phi$, $\sin \theta$ and $\sin \phi$
 - (b) Find exact values for the following:

(i)
$$\cos 20\pi$$
, (ii) $\cos \frac{9\pi}{4}$, (iii) $\sin \frac{5\pi}{3}$, (iv) $\cos \frac{7\pi}{6}$.

4. Differentiate the following with respect to x:

(a)
$$(x^4 + x^2 + 2x + 3)(4x + 1)$$

(b) $\frac{x^4 + 2x + 2}{x^2 + 3x + 4}$,

(c) $\log x^3 + \cos x^2$,

(d) $\cos(x - 1/x^2)$.

MATHA01A

PLEASE TURN OVER

5. Write the following expressions in the form a + ib where a and b are real numbers

(a)
$$(2+4i)(5+3i)$$
, (b) $\frac{2+4i}{5+6i}$, (c) $e^{i\pi/3}$,
(d) $\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^8$.

- 6. (a) State the Binomial Theorem for the expansion of $(a + b)^n$. Expand $(1 + x)^7$ in powers of x.
 - (b) Write down Maclaurin's formula for expanding a function f(x) as a power series in x and use it to find the power series for $\log \sqrt{1+x^2}$ up to the x^4 term.
- 7. A house is situated in a uniform, trackless jungle 2 km from a straight road. A cable company wishes to lay a cable from the house to a sub-station 6 km along the road. If it costs twice as much to lay a cable through jungle as it does along the road find where the cable should meet the road for the cost to be a minumum.

(Hint: Think of the road as the x-axis, the house at the point (0, 2), the sub-station at (6, 0) and (x, 0) as the point where the cable meets the road. You need to find the value of x that will give the least cost.)

MATHA01A

END OF PAPER

ť

1