UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ì

ð

Mathematics M234: Electricity and Magnetism

COURSE CODE	: MATHM234
UNIT VALUE	: 0.50
DATE	: 28-APR-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Consider the non-relativistic motion of a particle of mass m and charge q in a zero electric field $\mathbf{E} = (0, 0, 0)$ and a time-independent magnetic flux density \mathbf{B} .
 - (a) State the equation of motion.
 - (b) Prove that the kinetic energy of the particle is conserved.
 - (c) Find the general solution for the particle path $(\mathbf{r} = \mathbf{r}(t))$ in the case when $\mathbf{B} = (0, 0, B_0)$, where B_0 is a constant. Describe and sketch a typical path.
- 2. Consider two concentric spherical shells with radii a and b, with a < b. Suppose that both spherical shells are uniformly charged, with total charge Q_a on the inner shell and total charge Q_b on the outer shell. Starting from the vacuum version of Maxwell's equations in the electro-static limit, determine the following:
 - (a) the electric field \mathbf{E} everywhere, assuming that $|\mathbf{E}|$ tends to zero at infinity;
 - (b) the corresponding electric potential ϕ ;
 - (c) the capacitance in the case where $Q_a = -Q_b$.
- 3. Throughout this question, the vacuum versions of Maxwell's equations are assumed.
 - (a) Determine the electrostatic energy U_e in a parallel plate capacitor of plate area A and plate separation d when the plates have equal and opposite charges of magnitude Q. State clearly any standard approximations used. Sketch the physical system.
 - (b) Determine the magnetostatic energy U_m in a long thin circular cross-sectional solenoid of length ℓ and radius a with n turns per unit length, when the wire is carrying a current I. State clearly any standard approximations used. Sketch the physical system.
 - (c) Assuming that the solutions for parts 3a and 3b are approximately valid for the time-dependent case, and that each end of the wire from the solenoid is connected to a different plate of the capacitor, show that this system supports a sinusoidal oscillation and determine its frequency. You may assume that energy is conserved, but any other assumptions should be clearly stated. Where might such a tuned circuit be found in your home?

MATHM234

4. A consequence of the vacuum equation $\operatorname{curl} \mathbf{E} = -\partial \mathbf{B}/\partial t$, is that

$$\oint_{C(t)} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot d\mathbf{r} = -\frac{d}{dt} \int_{S(t)} \mathbf{B} \cdot \mathbf{n} \, dS,$$

where S(t) is a time-dependent surface element with unit normal field **n** and closed bounding curve C(t), and **v** is the velocity of a point on C(t).

(a) Verify this result in the case where **E** and **B** are given in cylindrical polar coordinates (r, θ, z) by

$$\mathbf{E} = \hat{\theta} \exp(-t), \qquad \mathbf{B} = \hat{\mathbf{z}} r^{-1} \exp(-t),$$

and C(t) is the circle z = 0, r = 1 + t, where $\hat{\theta}$ and \hat{z} are respectively the unit vectors in the θ and z directions.

- (b) What is the interpretation of $\mathbf{E} + \mathbf{v} \times \mathbf{B}$ in the frame moving at velocity \mathbf{v} ?
- 5. (a) State the electromagnetic media form of Maxwell's equations in differential form, giving the definitions of the fields **D** and **H**. What are the physical interpretations of the polarization field **P** and magnetization field **M**?
 - (b) Determine the fields **E** and **D** everywhere for a system consisting of a uniformly polarized ball of radius a with constant polarization \mathbf{P}_0 .
- 6. (a) State the defining property of a homogeneous isotropic conductor of conductivity σ .
 - (b) Show that the magnetic flux density **B** in such a conductor evolves according to

$$abla^2 \mathbf{B} = \mu_0 \sigma rac{\partial \mathbf{B}}{\partial t} + \varepsilon_0 \mu_0 rac{\partial^2 \mathbf{B}}{\partial t^2}.$$

(c) Solve for the **B** field for an electromagnetic plane wave in such a conductor, where all fields are assumed to be proportional to $\exp(i(\mathbf{k} \cdot \mathbf{x} - wt))$. Find the lengthscale of decay of the **B** field in the direction of motion, and give the name for this lengthscale.

MATHM234