# UNIVERSITY COLLEGE LONDON 

University of London

## EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M234: Electricity and Magnetism

COURSE CODE : MATHM234

UNIT VALUE : 0.50

DATE : 28-APR-06

TIME
: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Consider the non-relativistic motion of a particle of mass $m$ and charge $q$ in a zero electric field $\mathbf{E}=(0,0,0)$ and a time-independent magnetic flux density $\mathbf{B}$.
(a) State the equation of motion.
(b) Prove that the kinetic energy of the particle is conserved.
(c) Find the general solution for the particle path $(\mathbf{r}=\mathbf{r}(t))$ in the case when $\mathbf{B}=\left(0,0, B_{0}\right)$, where $B_{0}$ is a constant. Describe and sketch a typical path.
2. Consider two concentric spherical shells with radii $a$ and $b$, with $a<b$. Suppose that both spherical shells are uniformly charged, with total charge $Q_{a}$ on the inner shell and total charge $Q_{b}$ on the outer shell. Starting from the vacuum version of Maxwell's equations in the electro-static limit, determine the following:
(a) the electric field $\mathbf{E}$ everywhere, assuming that $|\mathbf{E}|$ tends to zero at infinity;
(b) the corresponding electric potential $\phi$;
(c) the capacitance in the case where $Q_{a}=-Q_{b}$.
3. Throughout this question, the vacuum versions of Maxwell's equations are assumed.
(a) Determine the electrostatic energy $U_{e}$ in a parallel plate capacitor of plate area $A$ and plate separation $d$ when the plates have equal and opposite charges of magnitude $Q$. State clearly any standard approximations used. Sketch the physical system.
(b) Determine the magnetostatic energy $U_{m}$ in a long thin circular cross-sectional solenoid of length $\ell$ and radius $a$ with $n$ turns per unit length, when the wire is carrying a current $I$. State clearly any standard approximations used. Sketch the physical system.
(c) Assuming that the solutions for parts 3 a and 3 b are approximately valid for the time-dependent case, and that each end of the wire from the solenoid is connected to a different plate of the capacitor, show that this system supports a sinusoidal oscillation and determine its frequency. You may assume that energy is conserved, but any other assumptions should be clearly stated. Where might such a tuned circuit be found in your home?
4. A consequence of the vacuum equation $\operatorname{curl} \mathbf{E}=-\partial \mathbf{B} / \partial t$, is that

$$
\oint_{C(t)}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot d \mathbf{r}=-\frac{d}{d t} \int_{S(t)} \mathbf{B} \cdot \mathbf{n} d S
$$

where $S(t)$ is a time-dependent surface element with unit normal field $\mathbf{n}$ and closed bounding curve $C(t)$, and $\mathbf{v}$ is the velocity of a point on $C(t)$.
(a) Verify this result in the case where $\mathbf{E}$ and $\mathbf{B}$ are given in cylindrical polar coordinates $(r, \theta, z)$ by

$$
\mathbf{E}=\hat{\theta} \exp (-t), \quad \mathbf{B}=\hat{\mathbf{z}} r^{-1} \exp (-t)
$$

and $C(t)$ is the circle $z=0, r=1+t$, where $\hat{\theta}$ and $\hat{\mathbf{z}}$ are respectively the unit vectors in the $\theta$ and $z$ directions.
(b) What is the interpretation of $\mathbf{E}+\mathbf{v} \times \mathbf{B}$ in the frame moving at velocity $\mathbf{v}$ ?
5. (a) State the electromagnetic media form of Maxwell's equations in differential form, giving the definitions of the fields $\mathbf{D}$ and $\mathbf{H}$. What are the physical interpretations of the polarization field $\mathbf{P}$ and magnetization field $\mathbf{M}$ ?
(b) Determine the fields $\mathbf{E}$ and $\mathbf{D}$ everywhere for a system consisting of a uniformly polarized ball of radius $a$ with constant polarization $\mathbf{P}_{0}$.
6. (a) State the defining property of a homogeneous isotropic conductor of conductivity $\sigma$.
(b) Show that the magnetic flux density $\mathbf{B}$ in such a conductor evolves according to

$$
\nabla^{2} \mathbf{B}=\mu_{0} \sigma \frac{\partial \mathbf{B}}{\partial t}+\varepsilon_{0} \mu_{0} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}
$$

(c) Solve for the B field for an electromagnetic plane wave in such a conductor, where all fields are assumed to be proportional to $\exp (i(\mathbf{k} \cdot \mathbf{x}-w t))$. Find the lengthscale of decay of the $\mathbf{B}$ field in the direction of motion, and give the name for this lengthscale.

